Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login (Shibboleth)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Table of Contents
Vol. 66, No. 2, 2008
Issue release date: March 2008
Section title: Original Paper
Hum Hered 2008;66:87–98

Likelihood-Based Association Analysis for Nuclear Families and Unrelated Subjects with Missing Genotype Data

Dudbridge F.
MRC Biostatistics Unit, Cambridge, UK
email Corresponding Author

Frank Dudbridge

MRC Biostatistics Unit, Institute for Public Health

Robinson Way, Cambridge CB2 0SR (UK)

Tel. +44 1223 330 300, Fax +44 1223 330 388

E-Mail frank.dudbridge@mrc-bsu.cam.ac.uk

Do you have an account?

Login Information

Contact Information

I have read the Karger Terms and Conditions and agree.


Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author.

© 2008 S. Karger AG, Basel

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: March 31, 2008
Issue release date: March 2008

Number of Print Pages: 12
Number of Figures: 1
Number of Tables: 4

ISSN: 0001-5652 (Print)
eISSN: 1423-0062 (Online)

For additional information: http://www.karger.com/HHE

Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.