The analysis of geographic distribution of polymorphic cytological markers, briefly termed as cytogeography, can be considered an important tool to be applied when studying the evolutionary significance of chromosome variability within a species, either to unravel the adaptive significance of chromosome polymorphisms or to investigate the parasitic nature of some genomic elements. In this article we review cytogeographical studies in Trimerotropis pallidipennis, a grasshopper species whose South American populations display geographical patterns of distribution of inversion and B chromosome polymorphisms. Several lines of evidence that issue from the analysis of the geographic distribution of polymorphic markers suggest that inverted chromosomes are special sequences that are maintained by deterministic forces. On the other hand, the pattern of distribution of B chromosome polymorphism clearly demonstrates its selfish nature, being more frequent in those populations in central environments. We also present the analysis of 272 individuals of T. pallidipennis from Uspallata, and demonstrate that Bs in this population have some influence on body size, enlarging many of the morphometric characters of individuals and we propose it could be the consequence of its genotypic disequilibrium with one inversion. These investigations are finally discussed with regard to the models proposed for the maintenance of B chromosomes in natural populations and in relation to the possible interactions with chromosome inversions.   

1.
Avise JC: Phylogeography: the history and formation of species (Harvard University Press, Cambridge 2000).
2.
Beukeboom LW, Werren JH: The paternal-sex-ratio (PSR) chromosome in natural populations of Nasonia (Hymenoptera: Chalcidoidea). J Evol Biol 13:967–975 (2000).
3.
Bougourd SM, Jones RN: B chromosomes: a physiological enigma. New Phytol 137:43–54 (1997).
4.
Brussard PE: Geographic patterns and environmental gradients: the central-marginal model revisited. Ann Rev Ecol Syst 15:25–64 (1984).
5.
Camacho JPM, Shaw MW, López-León MD, Pardo MC, Cabrero J: Population dynamics of a selfish B chromosome neutralized by the standard genome in the grasshopper Eyprepocnemis plorans. Am Nat 149:1030–1050 (1997).
6.
Camacho JP, Bakkali M, Corral JM, Cabrero J, Lopez-Leon MD, Aranda I, Martin-Alganza A, Perfectti F: Host recombination is dependent on the degree of parasitism. Proc R Soc Lond B Biol Sci 269:2173–2177 (2002).
7.
Carson HL: Genetic conditions which promote or retard the formation of species. Cold Spring Harb Symp Quant Biol 24:87–104 (1958).
8.
Cavallaro ZI, Bertollo LAC, Perfectti F, Camacho JPM: Frequency increase and mitotic stabilization of a B chromosome in the fish Prochilodus lineatus. Chromosome Res 8:627–634 (2000).
9.
Colombo PC: Effects of B-chromosomes on recombination in Cylindrotettix obscurus (Leptysminae, Acrididae). Caryologia 42:65–79 (1989).
10.
Colombo PC: Chromosome inversion polymorphisms influence morphological traits in Trimerotropis pallidipennis (Orthoptera). Genetica 114:247–252 (2002).
11.
Colombo PC: Inversion polymorphisms and natural selection in Trimerotropis pallidipennis (Orthoptera). Hereditas 139:68–74 (2003).
12.
Colombo PC, Confalonieri VA: Adaptive pattern of inversion polymorphism in Trimerotropis pallidipennis. Correlation with environmental variables: an overall view. Hereditas 125:289–296 (1996).
13.
Confalonieri V: Effects of centric shift polymorphisms on chiasma conditions in Trimerotropis pallidipennis (Oedipodinae: Acrididae). Genetica 76:171–179 (1988).
14.
Confalonieri VA: B-chromosomes of Trimerotropis pallidipennis (Oedipodinae: Acrididae): new effects on chiasma conditions. Caryologia 45:145–153 (1992).
15.
Confalonieri VA: Inversion polymorphism and natural selection in Trimerotropis pallidipennis: correlations with geographical variables. Hereditas 121:79–86 (1994).
16.
Confalonieri VA: Macrogeographic patterns in B-chromosomes and inversion polymorphisms of the grasshopper Trimerotropis pallidipennis. Genet Sel Evol 27:305–311 (1995).
17.
Confalonieri VA, Colombo PC: Inversion polymorphism in Trimerotropis pallidipennis (Orthoptera): clinal variation along an altitudinal gradient. Heredity 62:107–112 (1989).
18.
Confalonieri V, Sequeira A, Todaro L, Vilardi JC: Mitochondrial DNA and phylogeography of the grasshopper Trimerotropis pallidipennis in relation with clinal distribution of chromosome polymorphisms. Heredity 81:444–452 (1998).
19.
Confalonieri VA, Scataglini AA, Remis MI: Sequence differentiation among inversion rearrangements are revealed by RAPD markers in the grasshopper Trimerotropis pallidipennis (Orthoptera). Ann Entomol Soc USA 95:201–207 (2002).
20.
Cunha AB, Dobzhansky TH: A further study of chromosomal polymorphism in Drosophila willistoni in relation to environment. Evolution 8:119–134 (1954).
21.
Cunha AB, Dobzhansky T, Pavlovsky O, Spassky B: Genetics of natural populations. XXVIII. Supplementary data on the chromosomal polymorphism in Drosophila willistoni in relation to the environment. Evolution 13:389–404 (1959).
22.
Endler JA: Natural Selection in the Wild (Princeton University Press, Princeton 1986).
23.
Fletcher HL, Hewitt GM: Effects of a B-chromosome on chiasma localization and frequency in male Euthistira brachyptera. Heredity 44:341–347 (1980).
24.
Goñi B, de Vaio E, Beltrami M, Leira M, Crivel M, Panzera F, Castellanos P, Basso A: Geographic patterns of chromosomal variation in populations of the grasshopper (Trimerotropis pallidipennis) from southern Argentina. Can J Genet Cytol 27:259–271 (1985).
25.
Han Y, Liu X, Benny U, Kistler HC, VanEtten HD: Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogen Nectria haematococca. Plant J 25:305–314 (2001).
26.
Hasson ER, Fanara JJ, Rodríguez C, Vilardi JC, Reig OA, Fontdevila A: The evolutionary history of Drosophila buzzatii. XXVII. Thorax length is positively correlated with longevity in a natural population from Argentina. Genetica 92:61–65 (1993).
27.
Hewitt GM: Evolution and maintenance of B-chromosomes. Chromosomes Today 4:351–369 (1973).
28.
Hewitt GM: Animal Cytogenetics, in John B (ed): Insecta I. Orthoptera, vol. 3 (Gebrüder Borntraeger, Berlin, Stuttgart 1979).
29.
Hewitt GM: Hybrid zones: natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167 (1988).
30.
Hewitt GM, Brown FM: The B-chromosome system of Myrmeleotettix maculatus V. A steep cline in East Anglia. Heredity 25:363–371 (1970).
31.
Hewitt GM, John B: The B-chromosome system of Myrmeleotettix maculatus (Thunb). IV. The dynamics. Evolution 24:169–180 (1970).
32.
Holmes DS, Bougourd SM: B chromosome selection in Allium schoenoprasum. II. Experimental populations. Heredity 67:117–122 (1991).
33.
Hurst GD, Werren JH: The role of selfish genetic elements in eukaryotic evolution. Nat Rev Genet 2:597–606 (2001).
34.
John B: The role of chromosome change in the evolution of orthopteroid insects, in Sherma AN (ed): Chromosomes in the Evolution of Eukaryotic Groups, vol I, pp 1–114 (CRC Press, Boca Raton 1983).
35.
John B, Hewitt GM: The B-chromosome system of Myrmeleotettix maculatus (Thunb). I. The mechanics. Chromosoma 16:548–578 (1965a).
36.
John B, Hewitt GM: The B-chromosome system of Myrmeleotettix maculatus (Thunb). II. The statics. Chromosoma 17:121–138 (1965b).
37.
Jones RN: Are B-chromosomes selfish? in Cavalier-Smith T (ed.): The Evolution of Genome Size, pp 397–425 (John Wiley & Sons, London 1985).
38.
Jones RN, Houben A: B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci 8:417–421 (2003).
39.
Jones RN, Rees H: B-chromosomes (Academic Press, New York 1982).
40.
Kidwell MG, Lisch D: Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 94:7704–7711 (1997).
41.
King M: Species Evolution: The Role of Chromosome Change (Cambridge University Press, London 1993).
42.
Krimbas CB, Powell JR: Drosophila inversion polymorphism (C.R.C. Press, Boca Raton 1992).
43.
Lanteri AA, Confalonieri VA: Filogeografía: objetivos, métodos y ejemplos, in Llorente Bousquets J and Morrone JJ (eds.): Introducción a la Biogeografía en Latinoamérica: Conceptos, teorías, métodos y aplicaciones. vol II, pp 185–193 (Facultad de Ciencias, UNAM, México 2003).
44.
Lonig W, Saedler H: Chromosome rearrangements and transposable elements. Annu Rev Genet 36:389–410 (2002).
45.
Matrajt M, Confalonieri V, Vilardi J: Parallel adaptive patterns of allozyme and inversion polymorphisms on an ecological gradient. Heredity 76:346–354 (1996).
46.
Norry FM, Colombo PC: Chromosome polymorphisms and natural selection in Leptysma argentina (Orthoptera): external phenotype affected by a centric fusion predicts adult survival. J Genet 78:57–62 (1999).
47.
Östergren G: Parasitic nature of extra fragment chromosomes. Botaniska Notiser 2:157–163 (1945).
48.
Parker JS, Jones GH, Edgar LA, Whitehouse C: The population cytogenetics of Crepis capillaris IV: The distribution of B-chromosomes in British populations. Heredity 66:211–218 (1991).
49.
Partridge L, Fowler K: Direct and correlated responses to selection on thorax length in Drosophila melanogaster. Evolution 47:213–226 (1993).
50.
Powell JR: Progress and Prospects in Evolutionary Biology: The Drosophila Model (Oxford University Press, New York 1997).
51.
Raymond M, Rousset F: GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249 (1995).
52.
Regner LP, Pereira MSO, Alonso CEV, Abdelhay E, Valente VLS: Genomic distribution of P-elements in Drosophila willistoni and a search for their relationships with chromosomal inversions. J Hered 87:191–198 (1996).
53.
Sanchez V, Confalonieri V: Chromosome banding pattern in Trimerotropis pallidipennis (Orthoptera: Acrididae). Cytobios 73:105–110 (1993).
54.
Santos M, Ruiz A, Barbadilla JE, Quezada-Díaz JE, Hasson ER, Fontdevila A: The evolutionary history of Drosophila buzzatii. XIV. Larger flies mate more often in nature. Heredity 61:255–262 (1988).
55.
Vaio E de, Goñi B, Rey C: Chromosome polymorphisms in populations of the grasshopper Trimerotropis pallidipennis from southern Argentina. Chromosoma 71:371–386 (1979).
56.
Weissman DB, Rentz DCF: Cytological, morphological and crepitational characteristics of the Trimerotropines (Aerochoreutes, Circotettix, and Trimerotropis). Trans Am Entomol Soc 106:253–272 (1980).
57.
Werren JH, Nur U, Wu CI: Selfish genetic elements. Trends Ecol Evol 3:297–302 (1988).
58.
White M: Cytogenetics of Orthopteroid insects. Adv Genet 4:267–330 (1951).
59.
White M: Animal cytology and evolution, 3rd ed. (Cambridge University Press, London 1973).
60.
Zhang J, Peterson T: Genome rearrangements by nonlinear transposons in maize. Genetics 153:1403–1410 (1999).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.