Journal Mobile Options
Table of Contents
Vol. 3, No. 1-3, 2006
Issue release date: August 2006
Section title: Network modelling
ComPlexUs 2006;3:158–168

Is Selection Optimal for Scale-Free Small Worlds?

Palotai Z.a · Farkas C.b · Lorincz A.a
aDepartment of Information Systems, Eötvös Loránd University, Budapest, Hungary; bDepartment of Computer Science and Engineering, University of South Carolina, Columbia, S.C., USA
email Corresponding Author

A. Lörincz

Department of Information Systems, Eötvös Loránd University

Pázmány Péter sétány 1/c, HU–1117 Budapest (Hungary)

Tel. +36 1 209 0555/8473, Fax +36 1 381 2140, E-Mail


  1. Wolpert DH, Macready WG: No free lunch theorems for optimization. IEEE Trans Evolutionary Comput 1997; 1: 67–82.
  2. Barabási A, Albert R, Jeong H: Scale-free characteristics of random networks: the topology of the world wide web. Physica A 2000; 281: 69–77.
    External Resources
  3. Albert R, Barabási A: Statistical mechanics of complex networks. Rev Mod Phys 2002; 74: 47–91.
    External Resources
  4. Annunziato M, Huerta R, Lucchetti M, Tsimring LS: Artificial life optimization over complex networks. 4th International ICSC Symposium on Engineering of Intelligent Systems, Funchal, 2004.
  5. Kleinberg J, Lawrence S: The structure of the web. Science 2001; 294: 1849–1850.
  6. Sutton R, Barto A: Reinforcement Learning: an Introduction. Cambridge, MIT Press, 1998.
  7. Eiben AE, Smith JE: Introduction to Evolutionary Computing. Berlin, Springer, 2003.
  8. Fryxell J, Lundberg P: Individual Behavior and Community Dynamics. London, Chapman & Hall, 1998.
  9. Clark C, Mangel M: Dynamic State Variable Models in Ecology: Methods and Applications. Oxford, Oxford University Press, 2000.
  10. Kampis G: Self-Modifying Systems in Biology and Cognitive Science: a New Framework for Dynamics, Information and Complexity. Oxford, Pergamon, 1991.
  11. Csányi V: Evolutionary Systems and Society: a General Theory of Life, Mind, and Culture. Durham, Duke University Press, 1989.
  12. Pachepsky E, Taylor T, Jones S: Mutualism promotes diversity and stability in a simple artificial ecosystem. Artif Life 2002; 8/1: 5–24.
    External Resources
  13. Tesauro GJ: Temporal difference learning and td-gammon. Commun ACM 1995; 38: 58–68.
    External Resources
  14. Mataric MJ: Reinforcement learning in the multi-robot domain. Autonomous Robots 1997; 4/1: 73–83.
    External Resources
  15. Stafylopatis A, Blekas K: Autonomous vehicle navigation using evolutionary reinforcement learning. Eur J Operational Res 1998; 108: 306–318.
    External Resources
  16. Moriarty D, Schultz A, Grefenstette J: Evolutionary algorithms for reinforcement learning. J Artif Intell Res 1999; 11: 199–229.
  17. Tuyls K, Heytens D, Nowe A, Manderick B: Extended replicator dynamics as a key to reinforcement learning in multi-agent systems; in Lavrac N, et al (eds): ECML 2003, LNAI 2837. Berlin, Springer, 2003, pp 421–431.
  18. Kondo T, Ito K: A reinforcement learning with evolutionary state recruitment strategy for autonomous mobile robots control. Robot Auton Syst 2004; 46: 11–124.
    External Resources
  19. Kökai I, Lörincz A: Fast adapting value estimation based hybrid architecture for searching the world-wide web. Appl Soft Comput 2002; 2: 11–23.
    External Resources
  20. Lörincz A, Kókai I, Meretei A: Intelligent high-performance crawlers used to reveal topic-specific structure of the WWW. Int J Founds Comp Sci 2002; 13: 477–495.
    External Resources
  21. Palotai Z, Gábor B, Lörincz A: Adaptive highlighting of links to assist surfing on the internet. Int J Inf Technol Decis Making 2005; 4: 117–139.
    External Resources
  22. Angkawattanawit N, Rungsawang A: Learnable topic-specific web crawler; in Abraham A, Ruiz-del-Solar J, Köppen M (eds): Hybrid Intelligent Systems. Amsterdam, IOS Press, 2002, pp 573–582.
  23. Menczer F: Complementing search engines with online web mining agents. Decis Support Syst 2003; 35: 195–212.
  24. Risvik KM, Michelsen R: Search engines and web dynamics. Comput Networks 2002; 32: 289–302.
    External Resources
  25. Cho J, Garcia-Molina H: Effective page refresh policies for web crawlers. ACM Trans Database Syst 2003; 28: 390–426.
    External Resources
  26. Edwards J, McCurley K, Tomlin J: An adaptive model for optimizing performance of an incremental web crawler. Proceedings of the 10th International Conference on World Wide Web, Hong Kong, 2001, pp 106–113.
  27. Szita I, Lörincz A: Kalman filter control embedded into the reinforcement learning framework. Neural Comput 2004; 16: 491–499.
  28. Schultz W: Multiple reward systems in the brain. Nat Rev Neurosci 2000; 1: 199–207.
  29. Joachims T: A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization; in Fisher DH (ed): Proceedings of ICML-97, 14th International Conference on Machine Learning (Nashville, US, 1997). San Francisco, Morgan Kaufmann, 1997, pp 143–151.
  30. Boley D: Principal direction division partitioning. Data Mining Knowledge Discovery 1998; 2: 325–344.
    External Resources
  31. Sutton R: Learning to predict by the method of temporal differences. Mach Learn 1988; 3: 9–44.
  32. Watts DJ, Strogatz SH: Collective dynamics of ‘small-world’ networks. Nature 1998; 393: 440–442.