Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Journal Mobile Options
Table of Contents
Vol. 3, No. 1-3, 2006
Issue release date: August 2006
Section title: Network modelling
ComPlexUs 2006;3:158–168
(DOI:10.1159/000094197)

Is Selection Optimal for Scale-Free Small Worlds?

Palotai Z.a · Farkas C.b · Lorincz A.a
aDepartment of Information Systems, Eötvös Loránd University, Budapest, Hungary; bDepartment of Computer Science and Engineering, University of South Carolina, Columbia, S.C., USA
email Corresponding Author

A. Lörincz

Department of Information Systems, Eötvös Loránd University

Pázmány Péter sétány 1/c, HU–1117 Budapest (Hungary)

Tel. +36 1 209 0555/8473, Fax +36 1 381 2140, E-Mail andras.lorincz@elte.hu


References

  1. Wolpert DH, Macready WG: No free lunch theorems for optimization. IEEE Trans Evolutionary Comput 1997; 1: 67–82.
  2. Barabási A, Albert R, Jeong H: Scale-free characteristics of random networks: the topology of the world wide web. Physica A 2000; 281: 69–77.
    External Resources
  3. Albert R, Barabási A: Statistical mechanics of complex networks. Rev Mod Phys 2002; 74: 47–91.
    External Resources
  4. Annunziato M, Huerta R, Lucchetti M, Tsimring LS: Artificial life optimization over complex networks. 4th International ICSC Symposium on Engineering of Intelligent Systems, Funchal, 2004.
  5. Kleinberg J, Lawrence S: The structure of the web. Science 2001; 294: 1849–1850.
  6. Sutton R, Barto A: Reinforcement Learning: an Introduction. Cambridge, MIT Press, 1998.
  7. Eiben AE, Smith JE: Introduction to Evolutionary Computing. Berlin, Springer, 2003.
  8. Fryxell J, Lundberg P: Individual Behavior and Community Dynamics. London, Chapman & Hall, 1998.
  9. Clark C, Mangel M: Dynamic State Variable Models in Ecology: Methods and Applications. Oxford, Oxford University Press, 2000.
  10. Kampis G: Self-Modifying Systems in Biology and Cognitive Science: a New Framework for Dynamics, Information and Complexity. Oxford, Pergamon, 1991.
  11. Csányi V: Evolutionary Systems and Society: a General Theory of Life, Mind, and Culture. Durham, Duke University Press, 1989.
  12. Pachepsky E, Taylor T, Jones S: Mutualism promotes diversity and stability in a simple artificial ecosystem. Artif Life 2002; 8/1: 5–24.
    External Resources
  13. Tesauro GJ: Temporal difference learning and td-gammon. Commun ACM 1995; 38: 58–68.
    External Resources
  14. Mataric MJ: Reinforcement learning in the multi-robot domain. Autonomous Robots 1997; 4/1: 73–83.
    External Resources
  15. Stafylopatis A, Blekas K: Autonomous vehicle navigation using evolutionary reinforcement learning. Eur J Operational Res 1998; 108: 306–318.
    External Resources
  16. Moriarty D, Schultz A, Grefenstette J: Evolutionary algorithms for reinforcement learning. J Artif Intell Res 1999; 11: 199–229.
  17. Tuyls K, Heytens D, Nowe A, Manderick B: Extended replicator dynamics as a key to reinforcement learning in multi-agent systems; in Lavrac N, et al (eds): ECML 2003, LNAI 2837. Berlin, Springer, 2003, pp 421–431.
  18. Kondo T, Ito K: A reinforcement learning with evolutionary state recruitment strategy for autonomous mobile robots control. Robot Auton Syst 2004; 46: 11–124.
    External Resources
  19. Kökai I, Lörincz A: Fast adapting value estimation based hybrid architecture for searching the world-wide web. Appl Soft Comput 2002; 2: 11–23.
    External Resources
  20. Lörincz A, Kókai I, Meretei A: Intelligent high-performance crawlers used to reveal topic-specific structure of the WWW. Int J Founds Comp Sci 2002; 13: 477–495.
    External Resources
  21. Palotai Z, Gábor B, Lörincz A: Adaptive highlighting of links to assist surfing on the internet. Int J Inf Technol Decis Making 2005; 4: 117–139.
    External Resources
  22. Angkawattanawit N, Rungsawang A: Learnable topic-specific web crawler; in Abraham A, Ruiz-del-Solar J, Köppen M (eds): Hybrid Intelligent Systems. Amsterdam, IOS Press, 2002, pp 573–582.
  23. Menczer F: Complementing search engines with online web mining agents. Decis Support Syst 2003; 35: 195–212.
  24. Risvik KM, Michelsen R: Search engines and web dynamics. Comput Networks 2002; 32: 289–302.
    External Resources
  25. Cho J, Garcia-Molina H: Effective page refresh policies for web crawlers. ACM Trans Database Syst 2003; 28: 390–426.
    External Resources
  26. Edwards J, McCurley K, Tomlin J: An adaptive model for optimizing performance of an incremental web crawler. Proceedings of the 10th International Conference on World Wide Web, Hong Kong, 2001, pp 106–113.
  27. Szita I, Lörincz A: Kalman filter control embedded into the reinforcement learning framework. Neural Comput 2004; 16: 491–499.
  28. Schultz W: Multiple reward systems in the brain. Nat Rev Neurosci 2000; 1: 199–207.
  29. Joachims T: A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization; in Fisher DH (ed): Proceedings of ICML-97, 14th International Conference on Machine Learning (Nashville, US, 1997). San Francisco, Morgan Kaufmann, 1997, pp 143–151.
  30. Boley D: Principal direction division partitioning. Data Mining Knowledge Discovery 1998; 2: 325–344.
    External Resources
  31. Sutton R: Learning to predict by the method of temporal differences. Mach Learn 1988; 3: 9–44.
  32. Watts DJ, Strogatz SH: Collective dynamics of ‘small-world’ networks. Nature 1998; 393: 440–442.