The Recreational Drug Ecstasy Disrupts the Hypothalamic-Pituitary-Gonadal Reproductive Axis in Adult Male Rats

Sarah M. Dickerson a, Deena M. Walker b, Maria E. Reveron a, Christine L. Duvauchelle a, b, Andrea C. Gore a, c

a Division of Pharmacology and Toxicology and Institutes for b Neuroscience and c Cell and Molecular Biology, The University of Texas at Austin, Austin, Tex., USA

Key Words
Ecstasy (MDMA) · Gonadotropin-releasing hormone · Testosterone · Endocrine disruption · Male reproduction

Abstract
Reproductive function involves an interaction of three regulatory levels: hypothalamus, pituitary, and gonad. The primary drive upon this system comes from hypothalamic gonadotropin-releasing hormone (GnRH) neurosecretory cells, which receive afferent inputs from other neurotransmitter systems in the central nervous system to result in the proper coordination of reproduction and the environment. Here, we hypothesized that the recreational drug (+)-3,4-methylenedioxymethamphetamine (MDMA; ‘ecstasy’), which acts through several of the neurotransmitter systems that affect GnRH neurons, suppresses the hypothalamic-pituitary-gonadal reproductive axis of male rats. Adult male Sprague-Dawley rats self-administered saline or MDMA either once (acute) or for 20 days (chronic) and were euthanized 7 days following the last administration. We quantified hypothalamic GnRH mRNA, serum luteinizing hormone concentrations, and serum testosterone levels as indices of hypothalamic, pituitary, and gonadal functions, respectively. The results indicate that the hypothalamic and gonadal levels of the hypothalamic-pituitary-gonadal axis are significantly altered by MDMA, with GnRH mRNA and serum testosterone levels suppressed in rats administered MDMA compared to saline. Furthermore, our finding that hypothalamic GnRH mRNA levels are suppressed in the context of low testosterone concentrations suggests that the central GnRH neurosecretory system may be a primary target of inhibitory regulation by MDMA usage.

Introduction
Recreational use of (+)-3,4-methylenedioxymethamphetamine HCl (MDMA; ‘ecstasy’) is particularly popular among college students and those involved in the dance culture [1, 2]. MDMA abusers often consume the drug at all-night dance parties because it induces a state of euphoria, increased energy, insomnia, and enhanced sensory perception. MDMA causes neurocognitive deficits in attention, verbal and nonverbal learning and memory, psychomotor speed, and executive system functioning [reviewed in 3]. Other central nervous system effects of MDMA have been reported for cognitive function [4, 5], circadian rhythms [6, 7], and thermoregulation [8, 9].

A preliminary version of this work was presented at the 88th Annual Meeting of the Endocrine Society, June 2006.
The widespread and diverse actions of MDMA on brain and behavior are explained at least in part by its numerous target neurotransmitter systems [reviewed in 10]. The serotonergic and dopaminergic systems are most strongly implicated as primary targets of MDMA action, as shown by in vivo microdialysis studies [11–14] and by in vitro and ex vivo studies [15, 16]. In addition, MDMA stimulates norepinephrine [17–20], acetylcholine [21–23], and GABA release [24]. Thus, MDMA has potential to alter disparate nervous system functions through its multiple targets.

The impact of MDMA on reproductive neuroendocrine function and the reproductive axis has not, to our knowledge, been rigorously explored. Nevertheless, this question is biologically relevant, because the same neurotransmitter systems that control these aforementioned central nervous system actions of MDMA, including (but not limited to) serotonergic and dopaminergic pathways, also regulate reproduction [25–27; for a review see 28]. Reproductive function in mammals is driven by about 1,000 gonadotropin-releasing hormone (GnRH) neurons, localized in the preoptic area and hypothalamus of rodents [28], which in turn are regulated by afferent inputs from other brain regions. This neural circuitry enables the hypothalamic GnRH cells to coordinate reproduction with other environmental and homeostatic cues. Thus, GnRH neurons, through these central afferent inputs, are a potential target of MDMA.

The objective of the present study was to assess the neuroendocrine disrupting effects of MDMA in adult male Sprague-Dawley rats as a model for reproductive effects of ecstasy usage in humans. Although our primary interest has focused on the actions of MDMA on hypothalamic GnRH neurons, we also assessed actions of MDMA on the other two levels of the hypothalamic-pituitary-gonadal (HPG) axis: serum luteinizing hormone (LH) concentrations as an index of pituitary output and sex steroid hormones as an indicator of testicular function.

Materials and Methods

MDMA

MDMA was obtained through NIDA Drug Inventory Supply and Control (National Institute on Drug Abuse, Bethesda, Md., USA), and was dissolved in 0.9% saline.

Animals and Procedures

All experimental procedures were carried out in accordance with the National Institutes of Health Guide for Care and Use of Laboratory Animals, and performed following protocols approved by the Institutional Animal Care and Use Committee at the University of Texas at Austin. Adult male Sprague-Dawley rats (250–300 g; Charles River Laboratories, Inc., Wilmington, Mass., USA) were used in this study. The experimental model used herein was to train rats to lever press for 45-mg sugar pellets (Bio-Serv, Frenchtown, N.J., USA) on a fixed-ratio 1 schedule for a minimum of 8 days, as part of a separate study seeking to enable rats to self-administer either MDMA or vehicle [8]. Additional details on animals, surgeries, and procedures are also reported by Reveron et al. [8]. In brief, rats self-administered saline or MDMA either once (acute) or for 20 days (chronic), and were euthanized 7 days following last administration, for a total of four treatment groups.

![Fig. 1. Experimental model. Adult male Sprague-Dawley rats self-administered saline or MDMA either once (acute) or ad libitum for a period of 5 days per week over a 4-week time period, resulting in a total of 20 days (chronic). They were then euthanized 7 days following last administration, for a total of four treatment groups.](image-url)
Blood and Tissue Collection

The rats, acutely or chronically treated with MDMA or saline, were euthanized by carbon dioxide asphyxiation 7 days following the final treatment. Brains were removed and one half of the preoptic area-anterior hypothalamus (POA-AH), which contains the majority of GnRH cell bodies, was dissected out on wet ice, snap frozen within 2 min of removal on dry ice, and stored at –80°C until RNA extraction. Terminal blood samples were taken, and serum was separated by centrifugation at 6,000 g and stored at –80°C until further processing.

Serum Hormone Assays

The LH level in serum samples was measured in the laboratory of Dr. Michael Woller (University of Wisconsin–Whitewater, Whitewater, Wisc., USA) by double antibody competitive binding RIA as previously described [30, 31], using reagents provided by Dr. A.F. Parlow (National Hormone and Pituitary Program at NIDDK – National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Md., USA). The reference standard used was rat LH-RP-3. Duplicate volumes of 100 μl serum were used for each sample, and three separate assays were performed. The assay sensitivity was 0.2 ng/ml, the intra-assay coefficients of variation (CV) based on duplicate samples for each assay were 2.36, 4.39, and 4.35%, respectively, and the interassay CV was 7.23%.

Total serum testosterone was determined in two assays using the DSL-10-4000 Active® Testosterone EIA kit (lot No. 08035-B; Diagnostic Systems Laboratories, Inc., Webster, Tex., USA), according to the manufacturer’s instructions. Duplicate volumes of 50 μl serum were used for each sample. The assay limit of detection was 0.04 ng/ml, and the intra-assay CV based on duplicate samples for each assay was 3.11 and 5.76%, respectively, and the interassay CV was 8.07%.

Progesterone concentrations were determined in a single assay using the DSL-3900 Active® Progesterone coated-tube RIA kit (lot No. 07076; Diagnostic Systems Laboratories), according to the manufacturer’s instructions. Duplicate volumes of 25 μl serum were used for each sample. The sensitivity of the assay was 0.12 ng/ml, and the intra-assay CV was 2.3%.

Estradiol concentrations were determined in a single assay using the ultrasensitive DSL-4800 double antibody RIA kit (lot No. 07076; Diagnostic Systems Laboratories), according to the manufacturer’s instructions. Duplicate volumes of 200 μl serum were used for each sample. The assay limit of detection was 2.2 pg/ml, and the intra-assay CV based on duplicate samples for each assay was 2.83%. For all assays, samples for which the CV between duplicates was 10% or greater were excluded from analysis.

GnRH and Cyclophilin Gene Expression Analysis by Real-Time PCR

Gene expression of GnRH and cyclophilin, the latter an internal control [32, 33], were measured using real-time PCR with the Brilliant® qPCR kit and the MX3000 detection system (both Stratagene, La Jolla, Calif., USA). Messenger RNA from frozen POA-AH dissections of individual rats was extracted using a double detergent lysis buffer system [32]. In brief, frozen tissues were homogenized in cold lysis buffer through a 22-gauge needle, and cytoplasmic RNA was separated from nuclear RNA using a sucrose gradient. Samples were treated with proteinase K to remove proteins, and cytoplasmic RNA was extracted with chloroform and isopropanol, followed by precipitation at –20°C. The RNA was pelleted by centrifugation, washed, and resuspended in 10 μl nuclease-free water (catalog No. AM9937; Applied Biosystems, Foster City, Calif., USA). Genomic contamination was removed using the DNA-free™ kit (catalog No. AM1906; Applied Biosystems), according to the manufacturer’s instructions. The RNA concentration was quantified using the ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, Del., USA), and its purity was assessed using the 260:280– and 260:230-nm ratios. All samples had 260:280 ratios between 1.8 and 2.1, and 260:230 ratios >1.7. The RNA integrity was assessed by examining representative samples loaded onto a 1.5% agarose gel stained with ethidium bromide. RNA (2 μg) was then converted to cDNA via RT-PCR reaction using the SuperScript™ first-strand synthesis system (catalog No. 11904-018; Invitrogen Corporation, Carlsbad, Calif., USA), according to the manufacturer’s instructions. All RT reactions contained a negative control, which consisted of nuclease-free water instead of RT, to confirm absence of genomic contamination in each sample. cDNA reactions were diluted 1:5, and a 2-μl aliquot of cDNA was used as template for amplification in PCR. The primers used were 5’-TGTGCCAGGGTGTGAGCTTT-3’ (sense) and 5’-TCAATTTTCTCTCGTAGATGGAC-3’ (antisense) and probe 5’-CCACCAGTGCCATTATGGGGTGT-3’ for cyclophilin [34] and 5’-CCCTTGTGCTATTCACTCCA-3’ (sense) and 5’-AACACGGGCTACTGCATTTG-3’ (antisense) and probe 5’-ACGAAATGGAACAGTCCG-3’ for GnRH. PCR conditions were 95°C for 10 min, followed by 50 cycles of denaturing at 95°C for 30 s, annealing at 55°C for 60 s, and extension at 72°C for 30 s. For each sample, GnRH gene expression was normalized to cyclophilin, and relative expression was determined using the comparative CT Method [35]. RNA extracted from the POA-AH of an intact untreated male rat was used as a positive control, and was included as a standard on each assay plate. Samples were run in triplicate and analyzed in duplicate to account for pipetting errors. The mean positive control value was used as a calibrator for interplate variability. The interassay CV was 6%.

Statistical Analysis

The effects of MDMA on serum hormone levels and GnRH gene expression were analyzed using two-way ANOVAs [variables: drugs (saline, MDMA) × duration (acute, chronic)] with Statview 5.0 software for Macintosh computer. Significant interactions and main effects were probed further with Fisher’s protected least significant difference post hoc tests. Differences were considered significant at p < 0.05. All data are reported as mean ± SEM unless otherwise noted.

Results

Effects of MDMA on Hypothalamic GnRH Gene Expression

GnRH gene expression was measured using real-time PCR in POA dissections. Two-way ANOVA revealed a significant main effect of drug treatment upon GnRH mRNA levels, with overall lower levels of GnRH mRNA expressed in MDMA-treated compared to saline-treated

MDMA Disruption of Male Reproduction

Neuroendocrinology 2008;88:95–102

97
No significant main effect was detected for duration of treatment (chronic vs. acute), nor were any significant interactions between the two variables observed.

Effects of MDMA on Serum LH Levels

Serum LH levels varied considerably among rats, probably due to the pulsatile nature of LH release [31]. Two-way ANOVA showed no significant main effect of drug ($p = 0.11$) or duration ($p = 0.91$) upon LH levels, nor were any significant interactions between the two variables observed ($p = 0.71$; fig. 3).

Effects of MDMA on Serum Testosterone Levels

A significant main effect of drug treatment was found for serum testosterone concentrations, with decreased levels in the MDMA compared to the saline group ($F = 33.23, p < 0.0001$; fig. 4). A significant main effect of duration ($F = 5.15, p < 0.05$) on serum testosterone levels was also found, with higher testosterone levels after chronic than acute treatment (fig. 4). There was a nonsignificant trend for an interaction of treatment with duration ($p =
and results suggest that the effect of duration is largely due to differences among the saline-treated animals. Nevertheless, MDMA significantly suppressed serum testosterone levels at both durations compared to respective saline controls.

Effects of MDMA on Serum Progesterone and Estradiol Levels

Serum estradiol and progesterone concentrations were measured to further assess the effect of systemic MDMA on steroid hormones. For progesterone, two-way ANOVA revealed no significant main effects of drug (p = 0.62) or duration (p = 0.11), nor were any interactions between drug and duration observed (p = 0.29; fig. 5). For the estradiol assay, a high percentage of samples had a large assay CV, and a lack of serum for repeating the assay resulted in a very small sample size that did not provide adequate statistical power for analysis. For those animals with detectable estradiol concentrations, preliminary results suggested that there were no differences among any of the groups. Estradiol concentrations (pg/ml) for the acute-saline, chronic-saline, acute-MDMA and chronic-MDMA groups were 10.0 ± 4.1, 7.1 ± 4.5, 9.3 ± 1.9, and 10.3 ± 4.1, respectively (mean ± SD due to small numbers).

Effects of MDMA on Paired Testes Weights

Paired testes were removed and weighed, with acute-saline, chronic-saline, acute-MDMA and chronic-MDMA groups having weights (g) of 2.66 ± 0.72, 3.37 ± 0.25, 3.79 ± 0.96, and 3.25 ± 0.46, respectively (mean ± SEM). Although there was no effect of treatment or duration, there was a significant interaction of these two variables (p < 0.05), attributable to differences between acute-MDMA and acute-saline groups.

Discussion

The present study demonstrates that MDMA administered at dosages relevant to human intake [36–38] causes a significant disruption of hypothalamic and gonadal function. Specifically, and as discussed in more detail below, rats taking MDMA had a significantly lower GnRH gene expression and lower serum testosterone concentrations compared to their saline control counterparts. Because rats were euthanized 7 days after the last MDMA administration, these findings further suggest that both acute and chronic MDMA use has lasting endocrine disrupting actions on the HPG axis. Although we recognize that metabolism and secretion of MDMA vary between species [10], these results showing that MDMA disrupts reproductive neuroendocrine function in healthy adult male rats have potential relevance to humans who use MDMA even once.

The results show that MDMA administered either acutely or chronically resulted in a significant, approximately 50% decrease in GnRH mRNA levels 7 days later compared to saline-administered rats. Pituitary LH levels were slightly lower in these same MDMA animals but this latter result did not attain significance [e.g., 31]. Because we do not know when during the LH pulse a rat was euthanized, it is possible that more careful analyses of the effects of MDMA on LH pulsatility would reveal differences between the treatment groups. In addition, our current observation that serum testosterone was profoundly suppressed in MDMA rats is consistent with decreased drive upon the testes by the serum gonadotropins. Therefore, our results showing significant decreases in GnRH mRNA and serum testosterone concentrations, together with the nonsignificant decrease in serum LH, are consistent with diminished drive from hypothalamic GnRH neurons upon the rest of the HPG axis. Moreover, we speculate that the GnRH neurosecretory system is the primary target for HPG axis disruption by MDMA. If the gonad were the primary target of the MDMA suppress-
sion, thereby resulting in decreased testosterone concentrations, we would predict that negative feedback upon the hypothalamus would be reduced, resulting in an increase in GnRH gene expression, as reported in other experimental models [39]. As this was not the case, the suppressed testosterone levels are likely due to decreased feedforward input from the hypothalamus, and subsequently the pituitary, upon the testes.

In addition to androgens, the male adrenal and testes also produce substantial levels of progesterone [40, 41], a hormone that plays a role in the sexual behavior of male rodents [42]. This hormone was assayed in the current study, with no effects of drug treatment found. We also assayed serum estradiol, and although our sample sizes were too small to perform statistics, the preliminary results suggest that there was no apparent effect of any MDMA treatment. Therefore, effects of MDMA on steroid hormones measured thus far appear to be specific to testosterone.

Although it was beyond the scope of the current study to determine which neurotransmitter systems mediate the effects of MDMA on the hypothalamic GnRH system, these are likely to be similar to those that underlie MDMA’s other central nervous system actions. The two most plausible candidates are serotonin and dopamine, as they have been reported to be the primary targets of MDMA in other regions of the brain [8; reviewed in 10]. Serotonin and dopamine neurons innervate the hypothalamus, and receptors for both these neurotransmitters are expressed in the preoptic area, the location of the GnRH cell bodies [43, 44; reviewed in 28]. Serotonin agonists have been reported to be either stimulatory or inhibitory to GnRH neurons depending upon the experimental model [26, 45, 46]. A similar finding has been made for dopaminergic actions on GnRH cells [25, 47, 48]. Although it is difficult to reconcile both stimulatory and inhibitory effects of these neurotransmitter systems, they are probably best explained by there being a permissive window of normal functional activity of serotonin or dopamine, manipulations above or below which cause disruption of GnRH function. It is possible that through alterations in hypothalamic monoaminergic receptors, MDMA can influence these inputs into the GnRH neurosecretory system, either directly or indirectly.

This study was conducted to evaluate the impact of MDMA on the HPG axis of rats. However, we would like to note that the model of MDMA self-administration in rats is a topic of considerable controversy [49]. Several laboratories [29, 50, 51], including one of ours (C.L.D.) [8], but not others [reviewed in 49], have shown that rats and mice self-administer MDMA. Although acquisition occurs at a slower rate and supports fewer lever responses compared to other psychostimulants [49, 50, 52–55], the salient point is that our rats in the current study self-administered MDMA at levels comparable to voluntary human intake. Thus, we were able to make comparisons between animals given MDMA versus saline to determine specific effects on the reproductive axis.

The major novel finding of this study is that, to our knowledge, it provides the first evidence that MDMA disrupts the HPG axis of adult male rats and, even more specifically, that the mechanism for this effect involves the targeting of the hypothalamic-preoptic GnRH system. Our results are consistent with observations that environmental or pharmaceutical substances that disrupt monoaminergic neurotransmitter functions in the hypothalamus, including pesticides [56, 57] and PCBs [58, 59], affect GnRH and LH release. The popularity of MDMA among humans has increased in recent years [1], leading to concern over the potential health hazards associated with recreational drug use. The results of this study suggest that dosages approximating the recreational use of MDMA may impact the male reproductive axis.

Acknowledgments

The authors would like to acknowledge generous support from the National Science Foundation (NSF 04–615 to S.M.D.), the National Institutes of Health (T32 ES07247 to S.M.D.), the National Institute of Environmental Health Sciences (ES012272 to A.C.G.), and the National Institute on Drug Abuse (DA14640 to C.L.D.). We extend our appreciation to Dr. A.F. Parlow of the National Hormone and Pituitary Program at NIDDK for providing LH assay reagents. We thank Dr. Michael J. Woller at the University of Wisconsin-Whitewater for performing the LH assays and Esperanza Guevara for expert assistance with animal handling.

References

8 Reveron ME, Maier EY, Duvachelle CL: Experience-dependent changes in temperature and behavioral activity induced by MDMA. Physiol Behav 2006;89:358–363.

50 Fantegrossi WE, Godlewski T, Karabenick RL, Stephens JM, Ullrich T, Rice KC, Woods JH: Pharmacological characterization of the effects of 3,4-methylenedioxymethylamphetamine (‘ecstasy’) and its enantiomers on lethality, core temperature, and locomotor activity in singly housed and crowded mice. Psychopharmacology (Berl) 2003;166:202–211.

