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 Introduction 

 Memory, the ability to retain information and recall it 
at a later time, is a biologically fundamental function es-
sential for survival. Furthermore, memories shape our 
identity: we are who we are because of our memories, 
which guide our thoughts and decisions, and influence 
our emotional reactions.

  Memories exist in different forms and rely on distinct 
neural systems. On the basis of their duration, memories 
can be classified into short- and long-term. While short-
term memory is the ability to hold and recall information 
for a short period of time, usually for a few seconds, long-
term memories store information for long-lasting peri-
ods, sometimes for an entire lifetime. Short- and long-
term memories can also be distinguished on the basis of 
their biological mechanisms: while the former rely on ex-
isting networks and posttranslational modifications, the 
latter is accompanied by structural and functional chang-
es of neural networks that require de novo gene expres-
sion  [1–6] .

  Memories can also be classified according to their be-
havioral manifestation, which reflects the use of distinct 
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 Abstract 
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sary for an adaptive survival. In the last two decades, great 
progress has been made in the understanding of the bio-
logical bases of memory formation. The identification of 
mechanisms necessary for memory consolidation and re-
consolidation, the processes by which the posttraining and 
postretrieval fragile memory traces become stronger and in-
sensitive to disruption, has indicated new approaches for in-
vestigating and treating psychopathologies. In this review, 
we will discuss some key biological mechanisms found to be 
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underlying networks or memory systems. For example, 
a major distinction is between  explicit  (e.g. declarative) 
and  implicit  (e.g. procedural) memories  [7, 8] . Declara-
tive memories are memories that can be consciously re-
called such as those of facts, people and events, whereas 
procedural memories are those that store information 
about skills, for example driving a car, riding a bike or 
playing piano. While declarative memories are known to 
critically engage the medial temporal lobe, and particu-
larly the hippocampus, procedural memories critically 
recruit the cerebellum. Despite this distinction, memo-
ries are often complex and made from experiences that 
involve multiple memory systems interacting with each 
other.

  In the last two decades, one of the main interests of 
neuroscientists has been the identification of the biolog-
ical mechanisms that underlie the formation and storage 
of memories. Studies in invertebrate systems like  Aplysia 
californica  and  Drosophila melanogaster  have paved the 
way to the molecular and cellular discoveries in verte-
brate and particularly in mammalian systems. Most 
studies have investigated temporal lobe-dependent 
memories. From genetic, molecular, electrophysiological 
and anatomical investigations it has emerged that mo-
lecular modifications at all levels, posttranslational, 
translational and transcriptional, play a critical role in 
long-term memory formation. These changes include 
both general mechanisms of long-term plasticity, which 
occur in many brain regions and with all paradigms in-
volving long-lasting changes, as well as selective mecha-
nisms, which are found in specific brain regions and cell 
populations  [9–12] . 

  One general feature of long-term memory formation 
across memory systems and species is that a newly en-
coded memory initially exists in a fragile state and can be 
disrupted very easily by several types of interferences, 
from pharmacological to molecular to behavioral. With 
time, the memory becomes stronger and resilient to dis-
ruption. This process of strengthening and stabilization 
is known as memory consolidation  [2, 5, 6, 13, 14] . Once 
consolidated, hence insensitive to interferences, memory 
was believed to be ‘fixated’ and stored. However, studies 
that have been particularly revived in the last 15 years 
have shown that a memory that has become insensitive to 
molecular interferences can again become labile if it is 
reactivated, for example by retrievals. This postretrieval 
fragility, like the one that occurs after acquisition, is tem-
porally limited and the memory returns to a stable state 
through a process known as reconsolidation  [15–18] . 
Both consolidation and reconsolidation are phases dur-

ing which memory is vulnerable to interference and dur-
ing which a strengthening or weakening of the memory 
trace can be achieved. This understanding – and more
to come – is extremely important for potential clinical
applications: in principle, according to the consoli-
dation and reconsolidation mechanisms, it is possible to 
strengthen weak memories or memories that are easily 
lost, or conversely weaken memories that are too strong 
and linked to psychopathologies, like those for example 
associated with posttraumatic stress disorder (PTSD), 
anxiety or substance abuse  [17, 19–21] .

  Memory Consolidation 

 Memory consolidation initiates with a gene expres-
sion-dependent phase that lasts for several hours or 
days. This process, known as cellular or molecular con-
solidation  [4, 22] , represents the initial, highly fragile 
phase of memory storage. However, several types of 
memories that rely on the hippocampus are not fully 
processed and stable after this initial phase: although 
considered consolidated according to molecular inter-
ferences, these memories are still undergoing a great 
deal of processing that culminates with a network rear-
rangement that is accompanied by a decline in the criti-
cal role of the hippocampus. If the hippocampus is inac-
tivated or lesioned during this phase, the memories are 
lost. This process lasts for weeks in animals and up to 
years in humans, and it is known as system consolida-
tion  [10, 23] . 

  We have studied the mechanisms of the consolidation 
phases by using rats trained in the inhibitory avoidance 
task (IA). IA is a fear conditioning-based task, in which 
the animal encounters an aversive experience (foot shock) 
in a given context, hence learns to avoid it when repre-
sented with that context at later times. The advantage of 
this task is that it is learned in a single trial, thus allowing 
the identification of rapid changes occurring in the brain 
after encoding and the follow-up of their progression 
over time. Focusing first on the dorsal hippocampus, a 
region required for the formation of contextual associa-
tions, we have found that, in this region, the activation of 
the pathways mediated by the transcription factors cAMP 
response element-binding protein (CREB) and CCAAT 
enhancer-binding protein β and δ (C/EBPβ and δ) is re-
quired for IA memory consolidation  [5, 24–26] . Several 
studies, including ours, have led to the conclusion that the 
CREB-C/EBP is an evolutionarily conserved molecular 
pathway of long-term plasticity and memory formation, 
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as it plays a necessary role in these processes in various 
learning paradigms and species ranging from inverte-
brates to mammals  [5, 27] . 

  The understanding of upstream and downstream 
mechanisms of the activation of the CREB-C/EBP cas-
cade is important because it offers the identification of 
targets that can be used to develop strategies for strength-
ening or weakening memories  [28, 29] . Starting with the 
upstream regulation of the CREB-C/EBP cascade, as it is 
well known that stress hormones modulate memory for-
mation and retention, we tested the hypothesis that the 
learning-dependent activation of the CREB-C/EBP path-
way might be regulated by stress.

  Stress Mechanisms and Memory Consolidation 

 Emotionally charged or salient events are better re-
membered than emotionally neutral experiences, which in 
fact are often quickly forgotten. The emotion involved can 
be either positive (excitement and pleasure) or negative 
(pain, fear, trauma). Traumatic experiences, chronic stress 
and painful experiences are linked to the development and 
progression of psychopathologies like anxiety disorders, 
depression, PTSD and substance abuse  [30–35] .

  A large number of pharmacological and behavioral 
studies have shown that the level of stress follows an in-
verted U relationship with memory retention. Increasing 
levels of stress are required to form long-lasting memo-
ries that are proportionally stronger and more persistent. 
However, when stress becomes too intense or is chronic, 
memory can be impaired. Accordingly, it has been found 
that the levels of the stress hormones noradrenaline and 
glucocorticoids, which are released in response to stress, 
mediate and modulate memory retention according to an 
inverted U-shaped curve  [36–38] . Notably, the underly-
ing molecular mechanisms of these effects have remained 
elusive, until recently. 

  Recent studies, including those from our laboratory, 
have investigated the mechanisms activated downstream 
of glucocorticoid receptors (GRs) and implicated in long-
term memory formation. It emerged that after learning 
GRs regulate several intracellular signaling pathways 
known to be required for memory consolidation. These 
include the pathways activated by CREB, mitogen-acti-
vated protein kinase, calcium/calmodulin-dependent 
protein kinase II (CaMKII) and brain-derived neuro-
trophic factor (BDNF)  [39–41] . In addition, GRs control 
epigenetic modifications that influence long-term mem-
ory retention ( fig. 1 )  [42–44] .

  In our studies with rat IA, we found that, in the dorsal 
hippocampus, GRs control the rapid learning-depen-
dent increase in CREB phosphorylation and the expres-
sion of the immediate early gene activity-regulated cy-
toskeleton-associated protein as well as the increase in 
synaptic phospho-CaMKIIα, phosphosynapsin-1 and 
AMPA receptor subunit GluA1 expression. We also 
found that inhibition of GRs in the rat hippocampus sig-
nificantly reduces the phosphorylation of the tropomy-
osin-related kinase B receptor, extracellular-signal-reg-
ulated kinase 1/2, protein kinase B and phospholipase 
Cγ. Because these pathways are all canonical activation 
pathways downstream of BDNF, we concluded that the 
BDNF-dependent pathway is a key downstream effector 
of GR activation during memory consolidation ( fig. 1 ) 
 [41] . 

  In agreement with this conclusion, we found that in-
trahippocampal injections of BDNF, but not of other 
neurotrophins, such as nerve growth factor and neuro-
trophin 3, rescue both the molecular impairments and the 
amnesia caused by GR inhibition. The effect is selective 
for GRs because BDNF does not rescue behavioral defi-
cits caused by the inhibition of β-adrenergic receptors, 
underscoring the critical and specific role of the BDNF-
mediated signaling pathway in the GR-dependent mo-
lecular activations required for memory consolidation 
 [41] .

  Hence, we proposed a model that explains, at least in 
part, the nature of the biological mechanisms involved in 
the formation of long-term memories elicited by stressful 
or arousing experiences: we suggested that evolution has 
selected mechanisms of growth and prosurvival in re-
sponse to stress as the fundamental molecular pathways 
activated by learning and recruited in brain cells to form 
long-term memories  [45] .

  Although the activation of the GR/BDNF pathway is 
critical for proper memory consolidation in conditions of 
stress levels that are within normal ranges (beneficial 
stress levels), prolonged or extensive stress and abnormal 
levels of glucocorticoids can negatively regulate the BDNF 
response and memory processes  [46–48] . Various psychi-
atric disorders that are associated with declarative mem-
ory impairments, in particular major depression dis-
order, have been linked to altered functioning of the
hypothalamic-pituitary-adrenal axis  [49] . A significant 
number of depressed patients have increased levels of 
cortisol in the saliva and plasma, as a result of an increased 
activity of the pituitary and adrenal glands, due to re-
duced GR-mediated feedback inhibition by endogenous 
glucocorticoids, which are thought to be related to func-
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tional and expression changes in the GR  [50] . Indeed, re-
duced levels of GR have been found post mortem in the 
brain of depressed suicide patients, and antidepressant 
treatment not only ameliorates cognitive functions but 
also increases GR and BDNF expression, as well as GR-
mediated feedback inhibition in both laboratory animals 
and humans  [51–55] .

  Thus, our results and working model together with 
clinical evidence, agree with the idea that the convergence 
between GR and BDNF pathways may be an important 
node of dysfunction in stress-related cognitive impair-
ments and affective disorders. 

  Memory Reconsolidation 

 For a long time, memory consolidation was seen as a 
unitary process that transforms a fragile memory trace 
into a stable one, once and for all. However, studies done 
in the 1960s and then re-exploded in the last 15 years have 
demonstrated that memories that have become insensi-
tive to disruption by certain types of interferences, be-
come again transiently labile if they are recalled. Because 
the recalled memory must again be stabilized, this postre-
trieval process has been termed memory  reconsolidation  
 [18, 56] . In the last decade, several questions have been 
asked about memory reconsolidation. First, is reconsoli-

3

2+

  Fig. 1.  Schematic representation of learning-induced changes in 
the hippocampus through the GR-BDNF-tropomyosin-related ki-
nase B receptor (TrkB) pathway. Activated GRs rapidly enhance 
the translation of activity-regulated cytoskeleton-associated pro-
tein and may influence trafficking of TrkB to the membrane sur-
face and/or BDNF release. BDNF binding to its receptor TrkB 
leads to its phosphorylation, which results in the activation of ex-
tracellular-signal-regulated kinase 1/2 (ERK1/2), protein kinase B 
(Akt) and phospholipase Cγ (PLC-γ). In parallel, activated GRs, 
via transcription-dependent mechanisms, also rapidly lead to 
CaMKIIα phosphorylation. The activation of ERK1/2, Akt, PLC-γ 

and CaMKIIα pathways independently or in concert can converge 
on CREB phosphorylation, which leads to the synthesis of BDNF. 
The newly synthesized BDNF sustains the activation of the path-
ways and results in persistent phosphorylation of CREB, CaMKIIα 
and a downstream presynaptic target of CaMKIIα, phosophosyn-
apsin-1. Thus, GR activation recruits pre- and postsynaptic mech-
anisms to mediate memory consolidation  [41] . Arc = Activity-reg-
ulated cytoskeleton-associated protein; GluA1 = AMPA receptor 
subunit A1; DAG = diacylglycerol; IP 3  = inositol triphosphate. 
Figure adapted from Finsterwald and Alberini  [45] . 
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dation a mere repetition of the consolidation process? 
The results of several studies suggest that consolidation is 
distinct from reconsolidation because it engages distinct 
brain circuits, hence perhaps mechanisms, although, in 
the engaged regions, molecular mechanisms of long-term 
plasticity appear to be common denominators  [13, 57] . 
Second, does reconsolidation occur every time a memory 
is recalled and/or a trace is reactivated? The answer to this 
question is still controversial. With IA, contextual fear 
conditioning and drug-induced memories, in rodents as 
well as other types of fear memories in fish, the passage of 
time is a key limiting factor for the postretrieval vulner-
ability of memory. In fact, upon reactivation, a young 
memory is more fragile and easily disrupted than an old 
one indicating that over time memory becomes increas-
ingly stable and in some cases insensitive to postreactiva-
tion interference  [19, 58–61] . In our rat IA paradigm, sys-
temic injection of protein synthesis inhibitors after reac-
tivation produces a decrementally graded amnesia in 
2-day- and 1-week-old memories, but when the same 
treatment is performed on memories 2 and 4 weeks old, 
the amnestic effect is no longer observed  [25, 58] . How-
ever, auditory fear conditioning, a cue association, seems 
to remain sensitive to disruption following memory reac-
tivation for at least 45 days  [62] , suggesting that different 
types of memory have different sensitivities to postreac-
tivation interference  [15, 63] .

  A third and important question asked about memory 
reconsolidation is: what is its function? Why does mem-
ory become labile after retrieval or reactivation? Two 
main hypotheses have been proposed to explain the func-
tional role of reconsolidation. The first suggests that re-
consolidation strengthens the memories; in other words, 
the phase of temporary fragility mediates additional con-
solidation and therefore produces a stronger and longer-
lasting memory. The second hypothesis posits that recon-
solidation allows the association of new information into 
memories of past events, in order to integrate new learn-
ing with already established and reactivated memories. 

  We tested both hypotheses with rat IA and found that 
reconsolidation strengthens memory but does not medi-
ate memory updating, when updating is creating new as-
sociations to a reactivated memory. Specifically, we found 
that the reconsolidation of the original memory takes 
place independently from the formation of the new asso-
ciation, as the two can be doubly dissociated  [64] . We con-
cluded that, although the old memory needs to be re-
trieved in order to make new associations, its reconsolida-
tion process is not engaged in establishing the link between 
the new information and the reactivated memory, but 

rather this new association is processed as a new memory 
 [64] . In contrast, several studies argue that reconsolida-
tion is a mechanism of memory updating  [65–69] . We 
only partially agree with this conclusion and propose that 
reconsolidation updates the memory when the update is 
adding information to the same trace (e.g. strengthening). 
However, we disagree with the interpretation that the up-
dating due to adding distinct information (novelty) to a 
trace is mediated by reconsolidation. The studies arguing 
in favor of this conclusion do not actually prove that re-
consolidation mediates that updating; they show that in-
terference given after the presentation of novel informa-
tion disrupts the old memory. However, because both 
consolidation of a new trace and reconsolidation of a re-
activated one are sensitive to a similar interference, both 
processes can be actually disrupted, making the conclu-
sion about a selective role of reconsolidation debatable.

  Based on our studies, we speculate that the reconsoli-
dation of medial temporal lobe-dependent memories 
strengthens or further consolidates the original memory 
without changing its content  [57] . Why is this under-
standing important? Because it provides critical knowl-
edge for formulating hypotheses about memory process-
ing in both physiological and pathological conditions, as 
well as designing clinical studies based on the fragility of 
memory traces.

  Consolidation, Reconsolidation and Therapeutic 

Application 

 The studies of the last 20 years show that the process of 
memory formation and storage is very dynamic and that 
the storage of information continuously changes through 
processes of consolidation, reconsolidation and updating. 
The knowledge of biological mechanisms underlying these 
processes is important for developing novel specific treat-
ments for mental disorders and cognitive impairments.

  For example, for persistent and intrusive memories 
like those associated with PTSD, it may be possible to tar-
get the mechanisms of consolidation and block or reduce 
the formation or persistence of a very intense memory. 
Even more easily targeted would be the mechanisms of 
reconsolidation, as memory retrieval can be controlled. 
Thus, using a combination of behavioral or psychothera-
peutic approaches combined with pharmacology, it might 
be possible to weaken traumatic memories. Furthermore, 
the mechanisms of the reconsolidation and consolidation 
may offer an opportunity to restore the memory with a 
different emotional valence and intensity. 
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  Based on the current knowledge of consolidation and 
reconsolidation, we suggest that an ideal therapeutic ap-
proach to psychopathology may be one that modulates 
only certain components of the memory trace, such as 
stress, fear and emotions in general, but spares the semantic 
representation. More studies are needed in models of trau-
matic memories for understanding whether this is possible.

  Using the IA in rats, we have tested whether blocking 
the mechanisms of stress, and specifically GRs, which me-
diate and modulate memory consolidation and reconsol-
idation, reduce fear memory. We reasoned that when a 
traumatic experience is recalled, a stress response is initi-
ated, which, as shown by our studies described above, ac-
tivates the cascade of gene expression mediating memory 
consolidation and strengthening. Thus, we tested wheth-
er blocking the action of GRs could prevent reconsolida-
tion and memory strengthening. The GR antagonist 
mifepristone (RU38486), administered after the recall of 
IA either directly into the amygdala  [63]  or systemically 
 [70] , significantly weakened the original memory. With 
systemic administration, we also found that 1 or 2 treat-
ments were sufficient to achieve maximal disruption of 
the fear memory, and that the effect selectively targeted 
the recalled memory without interfering with other unre-
called memories  [70] . To examine whether the efficacy of 
treatment changes with the intensity of a traumatic expe-
rience, we tested the effects of mifepristone on memories 
evoked by different foot shock intensities. We found that, 
while less intense fear memories (low foot shock intensi-
ties) could be easily weakened, strongly traumatic memo-
ries (high foot shock intensities) were less susceptible to 
disruption by postreactivation mifepristone treatment. 
However, these traumatic memories could be weakened 
by a double mifepristone treatment administered after 
memory reactivation evoked a week after training  [70] . 
These data suggest that the effect of a reconsolidation-
based treatment on traumatic memories is best achieved 
by a delayed intervention rather than one given immedi-
ately after the trauma  [70] . However, the intervention 
should not be delayed after the system consolidation tem-
poral window, as memory would then be more resistant 
to disruption because it is more consolidated. A recent 
pilot study in male veterans with PTSD is in agreement 
with our IA model data, and reports that mifepristone 
may have a beneficial effect in PTSD remission  [71] .

  A large body of animal and human studies has also ex-
amined the effect of glucocorticoids on memory reten-
tion, and has indicated that they exert opposite effects in 
different memory phases and processes, e.g. typically fa-
cilitating memory consolidation and reconsolidation pro-

cesses, but impairing memory retrieval  [31, 38, 72, 73] . 
Since in PTSD traumatic memories are distressing and 
continuously retrieved, studies have tried to block mem-
ory retrieval in patients with PTSD by daily administra-
tion of cortisol over a 1-month period  [74] . Interestingly, 
a significant within-subject treatment effect was reported 
in both the intensity of feeling of reliving the traumatic 
event as well as the intensity of physiological distress  [74] . 
Moreover, acute cortisol treatments were also successful 
in enhancing extinction-based psychotherapies in pa-
tients with phobias  [75, 76] . In light of all these results, the 
stress hormone cortisol and its receptors appear to be a 
promising target for pharmacologic intervention in trau-
ma-related pathologies, including PTSD and phobias. 

  In the last decade mounting evidence shows that the 
endocannabinoid system plays an important role in mod-
ulating consolidation and reconsolidation of emotionally 
aversive memories through a combined action of the type 
1 cannabinoid receptor (CB1R) and glucocorticoids  [77–
79] . Specifically, it has been hypothesized that stress-in-
duced glucocorticoid release results in a rapid synthesis 
of endocannabinoids in the amygdala, which in turn sup-
press GABAergic/inhibitory input of noradrenergic neu-
rons, resulting in an enhancement of noradrenergic acti-
vation and thus consolidation of emotionally aversive 
memories  [77, 80] . Notably, injection of rats with the 
CB1R agonists into the amygdala enhanced the consoli-
dation of conditioned fear, whereas a CB1R antagonist 
impaired fear memory formation. These effects on fear 
conditioning are not restricted to the amygdala, but also 
involve pathways between the amygdala and the medial 
prefrontal cortex  [81–85] . Moreover, activation of CB1R 
via systemic or intrahippocampal administration of ei-
ther CB1R agonists or endocannabinoid reuptake block-
ers has been shown to facilitate fear extinction in rodents 
and fear extinction memory recall in humans  [86–91] . 
These studies indicate that the endocannabinoid system 
may represent a key modulator of environmental and 
stress influences on memory processes and should be ex-
plored as a possible therapeutic target for the treatment 
of neuropsychiatric illness involving memory dysfunc-
tions, including mood and anxiety disorders  [92–94] .

  It is clear that a better knowledge of the consolidation 
and reconsolidation mechanisms of fear memories is crit-
ical for better understanding how to approach fear- and 
trauma-induced pathologies. However, it is important to 
keep in mind that it should be understood why only a 
fraction of people who experience trauma develop PTSD, 
and why this disorder surfaces over time following trau-
ma. Are the storage mechanisms for recurrent, intrusive 
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memories that affect PTSD patients different from the 
storage mechanisms of traumatic memories in people 
who do not develop the disorder?

  If targeting memory reconsolidation will not be suffi-
ciently efficacious in ameliorating the symptoms of PTSD, 
an alternative approach would be to target reconsolida-
tion to actually prevent the onset of trauma-induced pa-
thologies. Weakening the intensity of traumatic memo-
ries during the first few weeks or months of their con-
solidation phase may be effective in impeding the 
development of PTSD or other disorders, including sub-
stance abuse, anxiety and depression.

  Another interesting approach that targets reconsolida-
tion and is entirely based on behavioral paradigms using 
a sequential retrieval (reconsolidation) and extinction 
protocols has been proven effective in both animal mod-
els and humans  [95, 96] . Interestingly, extinction after 
fear memory reactivation leads to a permanent loss of the 
fear expression, if the extinction is conducted within the 
reconsolidation’s temporal window  [95–98] . This ap-
proach has recently been successfully applied to reduce 
craving in drug addicts  [99] . Given the high impact of 
such a therapy in treating several psychopathologies, it 
would be important to determine its effects in remote 
pathological memories.

  A severe psychiatric disease with alterations of the hip-
pocampus and temporal lobe is schizophrenia, which also 
exhibits deficits in long-term memory as revealed by ver-
bal learning and memory tests. Schizophrenia is a com-
plex heterogeneous neuropsychiatric disorder, whose 
core symptoms include, in addition to deficits in declara-
tive long-term memory, distorted perceptions of reality, 
social avoidance and deficits in executive functions  [100–
102] . The memory deficits are believed to be mainly due 
to altered brain connectivity in the medial temporal lobe 
and prefrontal cortex  [102, 103] . Although a dysregula-
tion of the BDNF pathways during brain development 
has been proposed to mediate these structural alterations, 
the underlying molecular mechanisms of this dysconnec-
tivity remain largely unknown  [104–107] .

  One important question that recurs in the literature of 
mood and anxiety disorders is the role of the history of 
traumatic experiences, particularly those occurring dur-
ing early development. Compelling evidence from a vari-
ety of studies in humans and animals suggests that trau-
matic experiences during early development predispose 
individuals to multiple forms of psychopathologies, in-
cluding depression, PTSD, attention deficit/hyperactivity 
disorders, schizophrenia and substance abuse  [108–114] . 
Part of the explanation for the enhanced impact of adver-

sity in early life is thought to lie in the relatively high de-
gree of plasticity during this period, when environmental 
factors exert pervasive effects on a number of brain health 
trajectories  [109, 115] . Although considerable progress 
has been made in understanding the persistent changes 
in gene regulation via epigenetic mechanisms (specifical-
ly those involved in neural systems mediating the re-
sponse to stress  [116–118] ), relatively little is known 
about the neural substrates that mediate memory con-
solidation processes during early development. Although 
memories formed during the first few years of life are usu-
ally short-lived and become inaccessible after a relatively 
short time frame  [119–122] , considerable clinical evi-
dence suggests that young children retain some forms of 
internal representation of their trauma for months and 
even years and demonstrate trauma-specific behavioral 
reenactments, affective responses to traumatic triggers, as 
well as sensory and somatic symptoms  [123–130] . The 
understanding of the neurobiological mechanisms un-
derlying these pathologies is therefore greatly needed. 

  Conclusions 

 Long-term memory formation is a very dynamic pro-
cess, which includes several temporal and functional 
phases, such as encoding, consolidation, retrieval, storage 
and reconsolidation. Over the past two decades, much 
progress has been made in understanding the molecular 
and cellular mechanisms that occur in the brain during 
these phases, how they evolve over time, in which brain 
regions they take place, and how they are modulated. This 
knowledge, in particular for memories associated with 
fear, stress and trauma, has guided the search for treat-
ments that may alleviate psychopathologies, such as 
PTSD, anxiety, phobias and addiction. Important param-
eters including the type of memory, the strength and age 
of the memory, the type of retrieval, the temporal win-
dows of interference and the type of underlying mecha-
nisms are all critical parameters that should be taken into 
consideration for successful intervention. Further work is 
needed to elucidate the biology of memory formation in 
pathological conditions and early developmental phases. 
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