Introduction

Urinary stress incontinence (USI) is a highly prevalent disorder resulting from weak urethral closure mechanisms [1, 2]. Urinary incontinence affects a large proportion of adult women and is associated with considerable distress and social disability [1]. Initial treatment should include nonsurgical options such as behavioral changes and pelvic floor muscle training. Surgical procedures are more likely to cure USI than nonsurgical methods, but are associated with more adverse events [3].

Sling procedures, especially those called tension free, have been introduced with good long-term success and
low complication rates; however, they still cause problems due to either an excess or a lack of tension that produces voiding difficulties or urinary leakage persistence, respectively [4].

Since Ulmsten introduced the tension-free vaginal tape in 1995 [5], it has become a popular method for surgical treatment of urodraulically proven USI [6]. The fascial sling is an effective operative technique in patients who have undergone previous operations for incontinence [3, 7, 8].

We herein report our experience with two surgical techniques, i.e. tension-free vaginal tape (TVT) and autologous rectus fascia pubovaginal sling (n = 52).

Subjects and Methods

Between 2000 and 2004, 100 patients with USI were prospectively randomized (single-blind study) at a single institute (Shaheed Labbafinejad, Tehran) into either TVT (n = 48) or autologous rectus fascia pubovaginal sling (n = 52).

All patients underwent physical examination including stress test. The degree of pelvic organ prolapse was assessed and graded according to Baden et al. [9]. Basal laboratory investigations (complete blood count, renal and liver function tests, serum electrolytes, urine analysis and culture) were requested. According to the advice of the local Ethics Committee, plain abdominal radiography, urinary tract ultrasound and cystourethroscopy were performed in all patients to rule out other problems, such as stones or neoplasms. Multichannel urodynamics were performed in all patients. The degree of hypermobility was documented. Urodynamic study comprised medium-fill water cystometry (50 ml per minute) using a dual-lumen 8-french catheter. The technique, definitions and units of urodynamic measure conform to the standard proposed by the International Continence Society [10] and the patients were allowed to void in the sitting position in privacy.

Inclusion criteria were as follows: a history of USI, 1-hour pad test (more than 2-gram leak), objective positive cough (effort or exertion)-induced stress test, normal cystourethroscopy and multichannel urodynamic confirmation of type II USI (abdominal leak point pressure of 60–90 cm H2O), urethral hypermobility and a competent bladder neck [11].

Exclusion criteria were a history of more than 3 episodes of urinary tract infections during the past 2 years, other gynecological problems which might affect the result of surgery or need simultaneous repairs such as high-grade uterine prolapse, high-grade rectocele and enterocele, cystocele of equal to or more than grade II, abnormal filling phase of urodynamic study (evidence of uninhibited bladder contraction, low capacity or low compliance), low flow rates (lower than 15 ml/s), residual urine of more than 100 ml, trabeculated bladder mucosa on cystourethroscopy, a history of major pelvic trauma, and fractures that might negatively affect urethral function.

All preoperative parameters were recorded by a single experienced female urologist (F.S.). A detailed history was obtained, including the patient’s age, menopausal status, parity, comorbid medical conditions, pelvic surgery, and incontinence, based on the Incontinence Impact Questionnaire (IIQ) of Shumaker al. [12]. Women with mixed urinary incontinence (sensory urgency and urge incontinence) were not excluded as long as their urodynamic studies showed normal capacity, normal compliance and stable bladder. The study was approved by the local research Ethics Committee and informed consent was obtained after full explanation of the study. Surgery was only offered if conservative therapy had failed. The trial was independent of any industry sponsorship and involvement. Randomization was done using sealed, opaque envelopes. All procedures were performed by a single surgeon (F.S.A.), experienced in both techniques after a pilot study of at least 15 cases of TVT and 20 of sling.

Preoperative information was obtained from preprinted operative reports completed by the surgeon’s assistant, anesthesiologist, and nurse. This included the type of anesthesia, operative time (incision to closure), estimated blood loss (0–100, 100–250, and >250 ml), and bladder penetration (one or both sides).

Patients were observed for detection of cure and potential complications at 2 weeks and 1, 3 and 6 months after surgical treatment. Urine culture and urinary tract ultrasound (to evaluate possible unrecognized bladder penetration) were done at every visit. Reassessment was performed 12 months postoperatively as well as annually thereafter, and at the last self-visit of the patient. Urine culture, renal ultrasound and urine flowmetry were repeated. Objective cure was defined as negative cough-induced stress test with a full bladder (at least 250 ml filled) in the lithotomy and standing position, and a 1-hour pad test lower than or equal to 2 g. The amount of increasing weight of the pad was not compared pre- and postoperatively in each patient. Subjective cure was defined as the mean IIQ score in each group. According to the IIQ, a score less than 50 represents a good quality of life, between 50 and 70 moderate quality of life, and greater than 70 poor quality of life.

Women were asked to describe their satisfaction on a visual analogue scale of 0–10, whether or not they would have the procedure repeated if their incontinence returned, and whether or not they would recommend the procedure to a friend. A visual analogue scale of 8–10 and positive answers to the other two questions were defined as satisfaction.

The procedure was performed on an in-patient setting under spinal anesthesia in both groups. The patient was secured in the lithotomy position and the genitalia and lower abdomen were prepared and draped in a sterile manner. The TVT procedure was performed as described by Ulmsten et al. [6]. In the sling group, a transverse Pfannenstiel incision was made, and a strip of anterior rectus fascia sheath with a size of approximately 1–1.5 cm × 6 cm in diameter was harvested. Two parallel longitudinal incisions of about 1–1.5 cm were made in the anterior vaginal wall mucosa lateral to the bladder neck and proximal urethra, and a submucosal tunnel was created. The harvested graft was transferred to the vaginal submucosal tunnel. The two ends were sutured by vicryl 0 and brought to the retropubic area, and sutured to each other with no tension (2–3 fingers inserted beneath the suprapubic knot). The anterior wall of the vagina was checked to prevent overcorrection (the anterior vaginal wall should not move to the superior or posterior directions).

The bladder was filled with 250 ml of normal saline and checked for penetration in each needle or instrument passage by
a 0-degree and 70-degree optic lens. A 16-french Foley catheter was left in situ. The urethral catheter was removed on the first postoperative day in the TVT and 3–5 days postoperatively in the sling group, according to the patient's surgical wound condition (pain, healing of suprapubic and vaginal wound) and overall cooperation. In the case of bladder penetration, the urethral catheter remained in situ for 6–7 days in both groups.

Patients were asked to urinate two times before being discharged from the hospital and on each occasion, residual urine was measured by clean catheterization (the result of residual urine measurement by ultrasound has been false more often than with catheterization in our center [unpublished data]). They were discharged if the residual volume was less than 100 ml, and/or the voided volume was twice that of the residual volume.

Postoperative information of patients was analyzed if they agreed to a full assessment more than 1 year after surgery. Data were analyzed with SPSS software (Statistical Package for the Social Sciences, version 11.5, SPSS Inc., Chicago, Ill., USA) using the χ² test, Fisher exact test, and independent sample test.

A value of p < 0.05 was considered statistically significant, and the assumed confidence interval was 95%.

Results

All patients completed the full 6-month postoperative assessment. However, only 61 out of 100 were followed for more than 1 year. Of the 39 patients lost to follow-up, 16 were due to the distance and expense of travel, 12 were age-related and 11 were because of dissatisfaction with the surgical result (5 in the TVT and 6 in the sling group), as reported by telephone interview. The demographic and clinical characteristics of the patients are shown in table 1. There were no differences in age, history of failed previous anti-incontinence procedure, history of abdominal hysterectomy, and coexisting symptoms of urgency and urge incontinence between the two groups. The mean follow-up time was 38.5 (range 14–52) and 40 (range 15–54) months in the TVT versus sling group (p = 0.65).

The operation outcomes are summarized in table 2.
TVT group (p = 0.05), which did not change the surgical plan. More than 100 ml of intraoperative bleeding occurred in 6 (24%) and 11 (30%) in the TVT and sling groups, respectively, during the passage of instruments from the Retzius space, but in each group only 1 patient needed a blood transfusion intraoperatively due to more than 250 ml hemorrhage. Blood transfusion was made according to the judgment of the anesthesiologist. Hemorrhage was independent of bladder penetration. None of the patients received postoperative transfusion due to a dramatic decrease in the level of hemoglobin. The mean duration of catheterization (p<0.001) and hospitalization (p<0.001) was lower in the TVT group than in the sling group. Residual urine more than 100 ml and the need for intermittent self-catheterization was similar in both groups (p = 0.4), 4 weeks after surgery. Surgical revision was done in 1 and 2 patients of the TVT and sling groups, respectively. Residual urine decreased gradually to lower than 100 ml in the remaining 2 patients of the sling group until 1 year postoperatively without the need for surgical intervention. Sensory urgency and urge incontinence improved in 8 and remained in 5 patients in the TVT group, and correspondingly improved in 5 and remained in 7 in the sling group. De novo urge incontinence (self-reported by the patient and not urodynamically proven to be motor urge incontinence) was equal in both groups (p = 0.1). Of 8 patients with de novo urge incontinence in the sling group, only 2 complained of voiding difficulties and residual urine (50 and 70 ml).

Objective cure rate by the 1-hour pad test was 76 and 72% in the TVT and sling group, respectively (p = 0.83), and by the negative cough-induced stress test, it was 88 and 83% in the TVT and sling group, respectively (p = 0.9).

Subjective cure as determined by mean IIQ scores was 44.3 (range 35.2–61.5) in the TVT and 48.5 (range 38.5–69.7) in the sling group (p = 0.46). Fifteen (72%) of the TVT group and 20 (55%) of the sling group were satisfied with the operation (p = 0.3).

Comparison between preoperative and postoperative data on uroflowmetry (in the sitting position) showed some decrease in the maximum flow rate of both groups (31 ± 12 to 27 ± 8.7 ml/s in the TVT and 30.2 ± 10.8 to 26.7 ± 6.2 ml/s in the sling group; p < 0.05), but there was no statistically significant difference between the two groups postoperatively (p = 0.2). Five (20%) patients in the TVT and 11 (31%) in the sling group reported that they had gradually noted some changes in the pattern of voiding that was not evident in the early (first 6–12 months) follow-up, but it was not a constant phenomenon (p = 0.5).

Self-reported changes were occasional feeling of sudden transient stop in the urinary stream, need for a Credé maneuver at the end of stream, or need to change posture (from squatting to sitting, from sitting to semi-standing or bending forward) to help empty the bladder or feel comfortable. The mean maximum flow rate of these 16 patients was within normal limits (23.5 and 21.6 ml/s in the TVT vs. sling group) in the sitting position. Of these 16, only 2 patients in the sling group had a residual urine ≥50 ml (50 and 70 ml).

Postoperative complication included urinary retention and high residue (>100 ml) in 1 and 2 patients in the TVT and sling group, respectively. The release of suprapubic anchoring knots in 1 and combined vaginobdominal urethrolysis in another patient of the sling group were performed 1 and 6 months postoperatively. Suprapubic incisional hernia was repaired in 1 patient in the sling group 8 months after the surgery. Another patient in the TVT group also suffered from left-side suprapubic hernia in the route of needle passage while awaiting repair. The upper tract ultrasound results remained unchanged in both groups.

Discussion

The search for the optimal surgical technique for USI is still under way. There are over 100 different surgical procedures for the treatment of USI [14]. Based on the available data [3, 7, 8], colposuspension, pubovaginal sling and the newer mid-urethral synthetic slings are the most effective surgical treatments. TVT [5, 14] is used to correct USI by providing a firm backboard or ‘hammock’ for the urethra to rest on when intra-abdominal pressure increases. There are early reports on the efficacy of TVT on heterogenous types of USI in female patients [15–17]. In order to draw a more precise and practical conclusion, we tried to limit our study to the patients with type II USI (abdominal leak point pressure = 60 cm H2O to 90 cm H2O), which is the most common type. Also, for more precise exclusion criteria, we performed cystourethroscopy in all patients, although it is not routinely performed in the majority of studies and is considered only for patients with a history of previous pelvic surgery.

We elected to use autologous rectus fascia because a high failure rate has been reported using cadaveric donor fascia [18]. There are many studies evaluating TVT and
postoperative urodynamic findings, we cannot differen-

tiate whether it is of sensory or motor type, although de

ovo urge incontinence in our study was reported in 22% of

do the sling group; however, this was not statistically dif-

ferent from the TVT group. Of 8 patients with urge in-

tinence in the sling group, only 2 complained of void-

ing difficulty and residual urine (<100 ml). It is not clear

whether placement of the rectus fascia at the level of the

proximal urethra may trigger mechanisms resulting in

irritative bladder symptoms without obvious changes in

urinary stream. Self-reported changes in the pattern of

voiding or the need for changing posture during voiding

was a new finding for us since the patients claimed it

gradually appeared and was not evident at early (6–12

months) follow-up. It is not clear whether this should be

recognized as a voiding disorder or not. Another study is

ongoing to evaluate multichannel urodynamics and uro-

flowmetry in different positions in all the patients. Using

urodynamic evaluation to identify functional obstruc-

tion after TVT has been done in several studies [27–31]
in which an increase in maximum urethral closure pres-

sure, decreased peak and mean flow rates, and increased

voiding detrusor, mean detrusor pressure, and mean ure-

thral resistance have been observed.

It seems that late voiding dysfunction (≥1 year’s fol-

low-up) and its variants is an underreported postopera-

tive complication which needs more evaluation.

Conclusion

There was no statistical difference in terms of objec-

tive and subjective cure rates between TVT and autolo-

gous rectus fascial sling procedures in the treatment of

type II USI. Self-reported changes in voiding pattern or

posture at more than 1-year follow-up were not evident at

early follow-up.

References

1 Ananias C, Diakno MO: Epidemiology of fe-

male incontinence; in Raz S (ed): Raz Female

73–79.

2 Price N, Jackson S: Clinical audit of the use

tension-free vaginal tape as a surgical

 treatment for urinary stress incontinence,

set against NICE guidelines. J Obstet Gynaecol

2004; 24: 534–538.

3 Nygaard IE, Heit M: Stress urinary inconti-

4 Sousa-Escandon A, Lema Grille J, Rodriguez

Gomez JL, Rios Tallon L, Uribarri Gonzalez

C, Marques-Queimadelos A: Externally re-

adjustable device to regulate sling tension in

stress urinary incontinence: preliminary re-

5 Ulmsten U, Petros P: Intravaginal sling plas-

sy (IVS): an ambulatory surgical procedure

treatment of female urinary inconti-

754.

6 Ulmsten U, Falconer C, Johnson P, Jomaa M,

Lanner L, Nilsson CG, Olsson I: A multi-

center study of tension-free vaginal tape

(TVT) for surgical treatment of stress uri-

nary incontinence. Int Urogynecol J Pelvic

7 Zaragoza MR: Expanded indications for the

pubovaginal sling: treatment of type 2 or 3

TVT versus Rectus Fascia Sling for the

Treatment of USI

