Karger Publishers – 125 Years of Experience in Medical and Scientific Publishing

Karger Publishers – independent, family-run and Swiss-based.

It is our goal to serve the global scientific community with innovative and outstanding publications in all fields of medical science. This means dedication to maintaining the highest standards of quality, as well as personalized service for authors, editors and readers.

www.karger.com

Please order a free copy of the Karger Festschrift ‘Connecting the World of Biomedical Science’ by sending your address to 125years@karger.com.
Guidelines for Authors

Submission

Only original papers written in English are considered. Manuscripts should be submitted using the online submission website:

www.karger.com/dne

Should you experience any problems with your submission, please contact

dne@karger.ch

S. Karger AG
Editorial Office ‘Developmental Neuroscience’
P.O. Box
CH-4009 Basel (Switzerland)
Tel. +41 61 306 1424
Fax +41 61 306 1434

Suggested reviewers: Names, postal and e-mail addresses of four experts in the appropriate area of research should accompany each manuscript. It would be helpful to provide a URL from a PubMed search to document the publication record for those experts you are recommending as reviewers. Furthermore, up to four individuals who should not be solicited to review your article can be listed. Please see also: A Guide to Reviewing Articles (PDF)

Conditions

All manuscripts are subject to editorial review. Manuscripts are received with the explicit understanding that they are not under simultaneous consideration by any other publication. Submission of an article for publication implies the transfer of the copyright from the author to the publisher upon acceptance. Accepted papers become the permanent property of Developmental Neuroscience and may not be reproduced by any means, in whole or in part, without the written consent of the publisher. It is the author’s responsibility to obtain permission to reproduce illustrations, tables, etc. from other publications.

Plagiarism Policy

Whether intentional or not, plagiarism is a serious violation. We define plagiarism as a case in which a paper reproduces another work with at least 25% similarity and without citation. If evidence of plagiarism is found before/after acceptance or after publication of the paper, the author will be offered a chance for rebuttal. If the arguments are not found to be satisfactory, the manuscript will be retracted and the author sanctioned from publishing papers for a period to be determined by the responsible Editor(s).

Types of Articles Accepted

Articles may be either original papers or mini reviews. Original papers are generally 25 typed manuscript pages with 6–8 figures and will occupy approximately 12 printed pages in final. Mini reviews provide timely overviews of key topics, new insights and ongoing controversies. Mini reviews are typically 8–10 typed manuscript pages, and will occupy approximately 3–5 pages in final form.

Citation classics are invited mini reviews. These essays should be limited to approximately 1,500 words and 10 references. Citation classic submissions should include a conventional title page that includes word counts, the essay and numbered references. As these are short essays, abstracts are inappropriate.

Coverletter

Please describe the gap in knowledge that this report addresses, and discuss the implications, significance and novelty of your research for the Editor. Furthermore, please emphasize the unique and important contributions that your report makes to our understanding of developmental neuroscience.

Arrangement

Title page: The title should reflect the paper’s content and/or conclusions without over interpretation. A recommended length for the title is 15 words. The first page of each paper should indicate the title, the authors’ names, the institute where the work was conducted, and a short title (of less than 80 characters and spaces) for use as running head.

Full address: The exact postal address of the corresponding author complete with postal-code must be given at the bottom of the title page. Please also supply phone and fax numbers, as well as e-mail address.

Key words: For indexing purposes, a list of 3–10 key words in English is essential. A variety of key words that will help readers to find the article should be provided, and terms that are not already used in the manuscript title should be selected.

Abstract: Each paper needs an abstract of 500 words or less. The abstract should provide a precise and accurate synopsis of the data reported. It should convey the novelty and significance of the work.

Introduction: The introduction should describe the gap in knowledge that this report addresses and it should provide a complete but concise review of relevant prior studies. A typical introduction for Developmental Neuroscience contains 500 words.

Discussion: The discussion should provide a thoughtful evaluation of the results. There should be clear statements of the implications, significance and novelty of research and whether the data support or contradict previous studies. It should not simply be a restatement of the results. The discussion should include sufficient and appropriate citations.

Footnotes: Avoid footnotes. When essential, they are numbered consecutively and typed at the foot of the appropriate page.

Tables and illustrations: Tables and illustrations (both numbered in Arabic numerals) should be prepared on separate sheets. Tables require a heading and figures a legend, also prepared on a separate sheet. For the reproduction of illustrations, only good drawings and original photographs can be accepted; negatives or photocopies cannot be used. Due to technical reasons, figures with a screen background should not be submitted. Electronic conceded b/w/half-tone and color illustrations must have a final resolution of 300 dpi after scaling, line drawings one of 800–1,200 dpi.

Table and figure legends: The figure and table legends should be intelligible without reference to the text. The legends should describe what and how the experiments were performed without interpreting the results. All symbols and abbreviations must be defined within the legend as should be all scale bars and statistics.

Color Illustrations

Online edition: Color illustrations are reproduced free of charge. In the print version, the illustrations are reproduced in black and white. Please avoid referring to the colors in the text and figure legends.

Print edition: Up to 6 color illustrations per page can be integrated within the text at CHF 800.00 per page.

References

In the text identify references by Arabic numerals [in square brackets]. Material submitted for publication but not yet accepted should be noted as [unpublished data] and not be included in the reference list. The list of references should include only those publications which are cited in the text. Do not alphabetize; number references in the order in which they first appear in the text. The surnames of the authors followed by initials should be given. There should be no punctuation other than a comma to separate the authors. Preferably, please cite all authors. Abbreviate journal names according to the Index Medicus system. Also see International Committee of Medical Journal Editors: Uniform requirements for manuscripts submitted to biomedical journals (www.icmje.org). A typical article for Developmental Neuroscience will have 50–75 citations.

Examples


Reference Management Software: Use of EndNote is recommended for easy management and formatting of citations and reference lists.

Cover Illustrations

Authors are encouraged to submit a color photograph for consideration as cover image after a paper has been accepted for publication. Striking black and white drawings or photographs also will be considered. Cover photo submissions must be accompanied by a one-sentence caption. Images may, but need not be, a component of figure from the manuscript, but must be thematically related to the work to be published.

Digital Object identifier (DOI)

S. Karger Publishers supports DOIs as unique identifiers for articles. A DOI number will be printed on the title page of each article. DOIs can be useful in the future for identifying and citing articles published online without volume or issue information. More information can be found at www.doi.org

Supplementary Material

Please note that all supplementary files will undergo editorial review and should be submitted together with the original manuscript. The Editors reserve the right to limit the scope and length of the supplementary material. Supplementary material must meet production quality standards for Web publication without the need for any modification or editing. In general, supplementary files should not exceed 10 Mb in size. All figures and tables should have titles and legends and all files should be supplied separately and named clearly. Acceptable files and formats are: Word or PDF files, Excel spreadsheets (only if the data cannot be converted properly to a PDF file), and video files (.mov, .avi, .mpeg).

KARGER

© 2015 S. Karger AG, Basel

E-Mail karger@karger.com

www.karger.com

The Guidelines for Authors are available at:

www.karger.com/dne_Guidelines
Karger Journals in...

Neuroscience

Brain, Behavior and Evolution

Case Reports in Neurology

Cerebrovascular Diseases

Dementia and Geriatric Cognitive Disorders

Developmental Neuroscience

European Neurology

Interventional Neurology

Neurodegenerative Diseases

Neuroendocrinology

Neuroepidemiology

Neuroimmunomodulation

Neuropsychobiology

Enjoy free access to abstracts, sample issues, and e-mail Alert service:
www.karger.com/neuroscience

© 2015 S. Karger AG, Basel
The Journal Home Page is available at:
www.karger.com/dne
Contents

See the journal website for contents
Explores the unique potentials and vulnerabilities of the teenage brain

Teenage Brains: Think Different?
Editors
B.J. Casey
B.E. Kosofsky
P.G. Bhide

Contents
Adolescent Brain Development
- The Developmental Mismatch in Structural Brain Maturaton during Adolescence: Mills, K.L.; Goddings, A.-L.
- Regional Hippocampal Volumes and Development Predict Learning and Memory: Tannnes, C.K.; Walhoud, K.B.
- Engvig, A.; Grodyland, H.; Krogsrud, S.K.; Østby, Y.
- Holland, D.; Dale, A.M.; Fjell, A.M.
- Decreases in Energy and Increases in Phase Locking of Event-Related Oscillations to Auditory Stimuli Occur during Adolescence in Human and Rodent Brain: Eohlers, C.L.
- Wills, D.N.; Desikan, A.; Phillips, E.; Havstad, J.
- The Role of the Anterior Insula in Adolescent Decision Making: Smith, A.R.; Steinberg, L.; Chein, J.
- Behavior and Neural Correlates of Empathy in Adolescents: Overgaauw, S.; Görgüli, B.; Rieffe, C.; Crane, E.A.
- Cohen, A.O.; Somerville, L.H.; Galvan, A.; Tottonham, N.
- Hare, T.A.; Casey, B.J.
- Feedback Processing in Adolescence: An Event-Related Potential Study of Age and Gender Differences: Grosse-Fitter, J.; Migliacci, R.; Zottoli, T.M.
- The Impact of Puberty and Social Anxiety on Amygdala Activation to Faces in Adolescence: Ferri, J.; Bress J.N.
- Eaton N.R.; Proudflit G.H.
- Altered Gene Expression and Spine Density in Nucleus Accumbens of Adolescent and Adult Male Mice Exposed to Emotional and Physical Stress: Warren, B.L.; Sial, O.K.
- Alcantara, L.F.; Greenwood, M.A.; Brewer, J.S.; Rozovsky, J.P.
- Parise, E.M.; Bokris-Guzman, C.A.
- Shifts in Hormonal Stress Reactivity during Adolescence Are Not Associated with Changes in Glucocorticoid Receptor Levels in the Brain and Pituitary of Male Rats: Dziedzic, N.; Ho, A.; Adabi, B.; Feibl, A.R.; Romeo, R.D.
- BDNF Modulates Contextual Fear Learning during Adolescence: Dinevsha, I.; Pattwell, S.S.; Tessaro, L.; Bath, K.G.; Lee, F.S.

Drug Abuse in Adolescence
- The Role of Dopamine D1 and D2 Receptors in Adolescent Methylenidate Conditioned Place Preference: Sex Differences and Brain-Derived Neurotrophic Factor: Cummins, E.D.; Griffin, S.B.; Duty, C.M.; Peterson, D.J.
- Burgess, K.C.; Brown, R.W.
- Dopamine D1 and D2 Receptor Heteromer Regulates Signaling Cascades Involved in Addiction: Potential Relevance to Adolescent Drug Susceptibility: Perreault, M.L.
- O’Dowd, B.F.; George, S.R.
- Persistent Loss of Hippocampal Neurogenesis and Increased Cell Death following Adolescent, but Not Adult, Chronic Ethanol Exposure: Seedt, M.R.; Liu, W.
- Crews, F.T.; Spear, L.P.
- Physiological Correlates of Neurobehavioral Disinhibition that Relate to Drug Use and Risky Sexual Behavior in Adolescents with Prenatal Substance Exposure: Conrad, E.; Lagasse, L.L.; Shankaran, S.; Bada, H.; Bauer, C.R.; Whitaker, T.M.; Hammond, J.A.; Lester, B.M.

Prenatal Drug Exposure
- Effects of Prenatal Cocaine Exposure on Social Development in Mice: Kabel, Z.D.; Kennedy, B.; Katzman, A.; Lahvis, G.P.; Kosofsky, B.E.
Original Papers

95 Administration of Umbilical Cord Blood Cells Transiently Decreased Hypoxic-Ischemic Brain Injury in Neonatal Rats

105 Effects of Melatonin on Prenatal Dexamethasone-Induced Epigenetic Alterations in Hippocampal Morphology and Reelin and Glutamic Acid Decarboxylase 67 Levels

115 The Subventricular Zone in the Immature Piglet Brain: Anatomy and Exodus of Neuroblasts into White Matter after Traumatic Brain Injury
Costine, B.A. (Boston, Mass.); Missios, S. (Cleveland, Ohio); Taylor, S.R. (Charlestown, Mass.); McGuone, D.; Smith, C.M. (Boston, Mass.); Dodge, C.P. (Lebanon, N.H.); Harris, B.T. (Washington, D.C.); Duhaime, A.-C. (Boston, Mass.)

131 Dab2IP Regulates Neuronal Positioning, Rap1 Activity and Integrin Signaling in the Developing Cortex
Qiao, S.; Homayouni, R. (Memphis Tenn.)

142 The Neonatal Brain Is Not Protected by Osteopontin Peptide Treatment after Hypoxia-Ischemia
Bonestroo, H.J.C.; Nijboer, C.H.; van Velthoven, C.T.J.; van Bel, F. (Utrecht); Heijnen, C.J. (Utrecht, Tex.)

153 Increased Posterior Hippocampal Volumes in Children with Lower Increase in Body Mass Index: A 3-Year Longitudinal MRI Study

161 Serial Plasma Metabolites Following Hypoxic-Ischemic Encephalopathy in a Nonhuman Primate Model
Chun, P.T.; McPherson, R.J.; Marney, L.C.; Zangeneh, S.Z.; Parsons, B.A.; Shojaie, A.; Synovec, R.E.; Juul, S.E. (Seattle, Wash.)

172 Newborn Infants Detect Cues of Concurrent Sound Segregation
Bendixen, A. (Oldenburg/Leipzig); Háden, G.P. (Budapest/Amsterdam); Németh, R.; Farkas, D.; Török, M. (Budapest); Winkler, I. (Budapest/Szeged)

182 Normal Development of Human Brain White Matter from Infancy to Early Adulthood: A Diffusion Tensor Imaging Study

Cover Illustration
Illustration of the course of the RMS from the SVZ to the olfactory ventricle, for details see Costine et al., fig. 4b, pp. 123.