Subject Index

Acoustic neuroma, otosclerosis association 34, 35
Adipose tissue, oval window sealing 207
Aggrecan, gene linkage analysis 77, 83, 84
Air-bone gap (ABG) closure and hearing outcomes 169, 170, 190, 191
elderly patient outcomes 232, 234
OTSC2 genotype-phenotype correlation study 116
quantitative analysis 124
surgery outcome evaluation 340–342
tinnitus relationship 347
Air conduction threshold
OTSC2 genotype-phenotype correlation study 116
quantitative analysis 124
Anterior malleal ligament, fixation 159, 160
Apoptosis, corticosteroid protection in cochlea 306
Audiometry
importance in stapes surgery 119
multifrequency typanometry 123
otoacoustic emissions 123, 124
outcome measures 125
pure-tone audiometry 120, 121, 123
quantification 124, 125
Sofia profile plot, see Sofia profile plot
surgery outcome evaluation 340–342
tuning fork tests 120
Basilar membrane displacement, finite element modeling of stapes-inner ear interface 150–154
Blood, oval window sealing 207, 209
Bone conduction threshold
change over time after stapedotomy 267–272
stapedotomy comparison between carbon dioxide laser and skeeter surgery 267–272
Bone remodeling, see Perilabyrinthine bone; Sclerosing bone dysplasias
Carbon dioxide laser
advantages in stapes surgery 250
bone conduction thresholds in skeeter versus laser stapedotomy 267–272
features 243
one-shot stapedotomy
complications 261, 262, 264
goals 255, 262
hearing outcomes 259, 260, 263, 264
SurgiTouch scanner integration 256, 259, 262
technique 256, 258, 259
revision stapes surgery
outcomes 253, 254
technique 251, 253
Cerebrospinal fluid (CSF), perilymphatic fistula and granuloma 297, 298
Clip Piston MVP, malleus grip
stapedectomy 198–201
Cochlea
computed tomography of pathology 331–334
corticosteroid protection in stapes surgery 301–306
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>373</th>
</tr>
</thead>
<tbody>
<tr>
<td>hearing loss mechanisms after cochleostomy</td>
<td>305</td>
</tr>
<tr>
<td>Cochlear implant</td>
<td>far-advanced otosclerosis patients</td>
</tr>
<tr>
<td>cochlear otosclerosis features and outcomes</td>
<td>328–334</td>
</tr>
<tr>
<td>nonauditory stimulation</td>
<td>330, 332, 333</td>
</tr>
<tr>
<td>patient characteristics</td>
<td>324</td>
</tr>
<tr>
<td>side effects</td>
<td>324, 326</td>
</tr>
<tr>
<td>speech perception</td>
<td>324, 325</td>
</tr>
<tr>
<td>surgical challenges</td>
<td>323, 329, 330</td>
</tr>
<tr>
<td>otosclerosis association</td>
<td>41, 42</td>
</tr>
<tr>
<td>Collagen</td>
<td>COL1A1 gene defects and otosclerosis</td>
</tr>
<tr>
<td>expression in otosclerotic bone</td>
<td>45–48</td>
</tr>
<tr>
<td>Complications, see Cochlea; Granuloma; Sensorineural hearing loss; Stapes gusher; Vertigo</td>
<td></td>
</tr>
<tr>
<td>Compound action potential (CAP), cochlear protection by corticosteroids in stapes surgery</td>
<td>302–305</td>
</tr>
<tr>
<td>Computed tomography (CT)</td>
<td>cochlear pathology</td>
</tr>
<tr>
<td>sensorineural hearing loss findings</td>
<td>309–311</td>
</tr>
<tr>
<td>stapes gusher prevention</td>
<td>280–282</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>cochlea protection in stapes surgery</td>
</tr>
<tr>
<td>mechanisms of action</td>
<td>306</td>
</tr>
<tr>
<td>pharmacology</td>
<td>301</td>
</tr>
<tr>
<td>Crimping, prostheses</td>
<td>comparison</td>
</tr>
<tr>
<td>incus necrosis</td>
<td>184, 215, 219</td>
</tr>
<tr>
<td>materials and effects</td>
<td>204</td>
</tr>
<tr>
<td>quality and hearing outcomes</td>
<td>192</td>
</tr>
<tr>
<td>self-retaining titanium clip prosthesis avoidance</td>
<td>184–188</td>
</tr>
<tr>
<td>Database, see International otology database</td>
<td></td>
</tr>
<tr>
<td>Distortion product otoacoustic emissions (DPOAE)</td>
<td>collection and analysis</td>
</tr>
<tr>
<td>signal origins</td>
<td>134</td>
</tr>
<tr>
<td>surgical patient evaluation</td>
<td>134, 135</td>
</tr>
<tr>
<td>Elderly patients, stapes surgery</td>
<td>231–236</td>
</tr>
<tr>
<td>Endaural approach, technique and advantages</td>
<td>161–163</td>
</tr>
<tr>
<td>Er:YAG laser</td>
<td>features</td>
</tr>
<tr>
<td>revision stapes surgery</td>
<td>315, 317</td>
</tr>
<tr>
<td>stapedotomy outcomes</td>
<td>245, 246, 263</td>
</tr>
<tr>
<td>Estrogen, otosclerosis role</td>
<td>20, 22, 26</td>
</tr>
<tr>
<td>Eustachian tube, gastric contents and granuloma following stapedectomy</td>
<td>286–289, 292–294</td>
</tr>
<tr>
<td>Fenestration, historical perspective</td>
<td>2</td>
</tr>
<tr>
<td>Finite element modeling, stapes-inner ear interface</td>
<td>150–154</td>
</tr>
<tr>
<td>Footplate-perilymph interface influence on postoperative bone conduction</td>
<td>155–157</td>
</tr>
<tr>
<td>Gastroesophageal reflux (GER)</td>
<td>definition</td>
</tr>
<tr>
<td>etiology</td>
<td>291, 292</td>
</tr>
<tr>
<td>granuloma role following stapedectomy</td>
<td>286–294</td>
</tr>
<tr>
<td>otolaryngologic disorder pathogenesis</td>
<td>290, 291</td>
</tr>
<tr>
<td>Gelfoam</td>
<td>granuloma response</td>
</tr>
<tr>
<td>oval-window sealing</td>
<td>207–209</td>
</tr>
<tr>
<td>Granuloma</td>
<td>foreign-body reactions</td>
</tr>
<tr>
<td>magnetic resonance imaging</td>
<td>311</td>
</tr>
<tr>
<td>nausea and vomiting association</td>
<td>286, 293, 294</td>
</tr>
<tr>
<td>perilymphatic fistula association</td>
<td>297, 298</td>
</tr>
<tr>
<td>rat study of pathophysiology following stapedectomy</td>
<td>286–294</td>
</tr>
<tr>
<td>reparative granuloma incidence</td>
<td>296</td>
</tr>
<tr>
<td>Hearing loss, otosclerosis epidemiology</td>
<td>86, 87</td>
</tr>
<tr>
<td>Heredity, otosclerosis</td>
<td>family identification</td>
</tr>
<tr>
<td>linkage analysis</td>
<td>77, 78</td>
</tr>
<tr>
<td>aggrecan gene analysis</td>
<td>77, 83, 84</td>
</tr>
<tr>
<td>chromosome 7q</td>
<td>79, 83</td>
</tr>
<tr>
<td>chromosome 15q</td>
<td>78, 79</td>
</tr>
<tr>
<td>overview</td>
<td>69, 76, 77</td>
</tr>
</tbody>
</table>
Subject Index 374

Hereditary otosclerosis (continued)
 Mendelian pattern 26
 pedigree analysis 76, 81–83
 twin studies 69
Histologic otosclerosis
 definition 7
 histopathology
 angiogenesis 29
 antibody distribution 29
 collagen expression in bone 45–48
 inflammation 87, 88, 90
 macrophages 27
 measles virus antigens 29, 30
 T-cells 27, 28
incidence 17, 18
prevalence
 overview of studies 7, 8, 31, 114
 temporal bone study in Caucasians
 histology 11–15
 microradiographic evaluation 11, 13
 microscopy of temporal bone slices 11, 13
 sample characteristics 9
 selection 8
 tissue processing 9, 10
 stapes pathology 59, 60
Ho:YAG laser, features 242, 243
Immunoglobulins, see Measles
Incudomalleal joint, exposure 160
International otology database
 clinical trial exploitation 339
 data entry 337
 data quality assurance and validation 338
 feedback to surgeons 338
 membership 338
 ownership of data 339
 rationale 335, 336
 security 337, 338
 user-friendliness 338
 Web access 337
 working panel 336, 337
Labyrinthitis, magnetic resonance imaging 313
Laser surgery
 carbon dioxide laser
advantages 250
 bone conduction thresholds in skeeter
 versus laser stapedotomy 267–272
 features 243
 one-shot stapedotomy
 complications 261, 262, 264
 goals 255, 262
 hearing outcomes 259, 260, 263, 264
 SurgiTouch scanner integration 256, 259, 262
 technique 256, 258, 259
 revision stapes surgery
 outcomes 253, 254
 technique 251, 253
 delivery systems 241
Er:YAG laser
 features 243–245, 263, 264
 revision stapes surgery 315, 317
 stapedotomy outcomes 245, 246, 263
 heating and tissue ablation 238–241
 historical perspective 242
 Ho:YAG laser features 242, 243
 prospects 246
 rationale in stapes surgery 238, 255
 Ti:sapphire laser features 246
Learning curve, see Training, stapes surgery
Linkage analysis, see Heredity, otosclerosis
Loose-wire syndrome (LWS), etiology 191
Magnetic resonance imaging (MRI)
 prosthesis concerns 319
 sensorineural hearing loss findings 311, 313
Malleostapedotomy
 rationale 215, 216
 titanium piston prosthesis and outcomes 216–220
Malleus, fixation 159, 160, 220
Malleus grip stapedectomy
 Clip Piston MVP prosthesis 198–201
 postoperative evaluation 199, 200
 technique 197–200
Measles
 antibodies in otosclerosis
 circulating 71, 107, 109, 112
 immunoglobulin G 109
neutralization assays
 separated sera 112
 whole sera 112
perilymph 89, 90, 95
antigens in otosclerosis 29, 30
epidemiology 104
otosclerosis
 association and vaccination impact 22, 23, 70, 107
pathophysiology 94, 103, 104
proteins 94
viral RNA in otosclerosis
overview 88, 89
reverse transcriptase-polymerase chain reaction
 controls 98, 100, 102
 frequency of detection 98–100, 103
matrix protein RNA 97, 98
nucleoprotein RNA 95, 96
primes 99, 100
reverse transcription 95, 96
RNA extraction 95
semistemated polymerase chain reaction 96, 97, 99
Ménière’s disease, otosclerosis association 36–39, 43, 50–52
Merogel, oval window sealing 208, 209
Microtraumatic stapedotomy
 advantages 167
 outcomes 165, 166
rationale 165
stapedectomy outcome comparison 166, 167
technique 165
Misapprehension, avoidance in stapes surgery 158–163
Multifrequency typanometry, otosclerosis diagnosis 123
Nitinol, see SMart piston
Nonauditory stimulation (NAS), cochlear implant in otosclerosis patients 330, 332, 333
Osteogenesis imperfecta (OI)
classification 223
clinical features 223
conductive hearing loss 165, 223, 224, 226, 227
epidemiology 222
heredity and genetics, see Heredity, otosclerosis
history of study 31
measles role, see Measles

clinical features 223
cost 223
conductive hearing loss 165, 223, 224, 226, 227
epidemiology 222
genealogy 222, 226
middle ear pathology 228, 230
otosclerosis 222
otosclerosis diagnosis 123, 124
Otosclerosis, see also Histologic otosclerosis
aging effects
 socioeconomic factors 22
 statistical analysis 19, 20
 study design 18, 19
 trends 25
 women 20, 22, 23
associated pathologies
 cochlear implant 41, 42
 frequencies 32, 33
 genetic labyrinthine anomalies 33, 34
 Ménière’s disease 36–39, 43, 50–52
 otitis media 39–41
 study design 32
 tumors 34, 35
 vertigo 36–39, 43
audiometry, see Audiometry
bone remodeling, see Perilabyrinthine
 bone
clinical otosclerosis prevalence and trends 7, 361, 362
cochlear otosclerosis 328–334
estrogen role 20, 22, 26
genes, see specific genes
heritage and genetics, see Heredity, otosclerosis
history of study 31
Otosclerosis (continued)
 pathogenesis 18
 phases 87
 sites on temporal bone 26
OTSC1, locus 115
OTSC2
 genotype-phenotype correlations
 age-related typical audiograms 115
 air conduction versus air-bone gap 116
 annual deterioration 115, 116
 study design 115
 locus 115
 prospects for study 117
OTSC3, locus 115
OTSC4, locus 115
OTSC5, locus 115
Oval window sealing
 adipose tissue 207
 blood 207, 209
 Gelfoam 207–209
 historical perspective 206, 207
 Merogel 208, 209
 vein grafts 207, 208

Paget’s disease
 conductive hearing loss 165
 viral infection role 54, 70
Pedigree analysis, see Heredity, otosclerosis
Perilabyrinthine bone
 anatomy of compact bone remodeling 53, 54
 modeling and remodeling studies in otosclerosis
 in vitro 56, 57
 in vivo 55, 56
Perilymphatic fistula, granuloma
 association 297, 298
Pneumolabyrinth, computed tomography
 309, 310
POU3F4 gene mutations associated with stapes gusher 282
Prostheses
 autogenic versus xenogenic materials and outcomes 179–183, 219
 crimping see Crimping, prostheses evolution 174–178
 loose-wire syndrome 191
 malleus grip stapedectomy 197–201
 self-retaining titanium clip prosthesis 184–188
 SMart piston 192–195
Pure-tone audiometry
 elderly patient outcomes 234
 otosclerosis diagnosis 120, 121, 123
 Sofia profile plot, see Sofia profile plot
 surgery outcome evaluation 340–342
Pyramidal process, exposure 160
RANK system
 bone turnover role 68, 60, 71
 therapeutic targeting 71, 72
Reparative granuloma, see Granuloma
Revision stapes surgery
 carbon dioxide laser surgery
 outcomes 253, 254
 technique 251, 253
 complications 274
 indications 274, 276
 intraoperative findings 315–319
 retrospective analysis in otosclerosis 273–276
 technique 315
Round window
 sclerosing bone dysplasia encroachment 64
 visualization 160, 161
Sclerosing bone dysplasias
 facial nerve compression 64
 history of study 61–63
 round window encroachment 64
 SOST gene role 63
 surgery 65–67
Sensorineural hearing loss (SNHL)
 imaging findings
 computed tomography 309–311
 magnetic resonance imaging 311, 313
 incidence following stapes surgery 308, 348
 psychological and social consequences after stapes surgery 349–351
Severe disabling tinnitus (SDT)
 features 343, 344
otosclerosis association 344, 346
stapes surgery effects in otosclerosis patients 343–347
Skeeter stapedotomy, bone conduction threshold comparison with carbon dioxide laser stapedotomy 267–272
SMart piston
nitinol properties 192–194
stapedotomy outcomes 194, 195
Sofia profile plot
applications 132
principles 128–130
rationale 128
Stapedectomy
complications, see Cochlea; Granuloma; Sensorineural hearing loss; Stapes gusher; Vertigo
elderly patients 231–236
finite element modeling of stapes-inner ear interface 150–154
footplate-perilymph interface influence on postoperative bone conduction 155–157
historical perspective 1–4, 32, 174–180, 237, 238
laser surgery, see Laser surgery
malleus grip stapedectomy 197–201
oval window sealing, see Oval window sealing
prostheses, see Prostheses
revision surgery, see Revision stapes surgery
stapedotomy outcome comparison 166, 167, 169–173
training, see Training, stapes surgery
Vibrant Soundbridge middle ear implant combination surgery 321, 322
Stapedial reflex, functions 210
Stapedial tendon preservation, long-term outcomes in stapedotomy 210–213
Stapedioplasty, pressure change response from swimming and flying 146–149
Stapedotomy, see also Malleostapedotomy; Microtraumatic stapedotomy
complications, see Cochlea; Granuloma; Sensorineural hearing loss; Stapes gusher; Vertigo
elderly patients 231–236
finite element modeling of stapes-inner ear interface 150–154
footplate-perilymph interface influence on postoperative bone conduction 155–157
laser surgery, see Laser surgery
osteogenesis imperfecta outcomes
Osaka study 227–230
Stockholm study 224
prostheses, see Prostheses
revision surgery, see Revision stapes surgery
stapedotomy outcome comparison 166, 167, 169–173
stapedial tendon preservation 210–213
tinnitus relief, see Severe disabling tinnitus
Stapes
atmospheric pressure change response
checklist for surgery 159–161
exposure 160
finite element modeling of stapes-inner ear interface 150–154
fixation
history of study 1, 2
osteogenesis imperfecta 230
otosclerosis 164
scanning electron microscopy of otosclerosis pathology 59, 60
Stapes gusher
definition 278
prevention
audiometric evaluation 280
computed tomography 280–282
medical history 279
POU3F4 gene mutations 282
surgical technique 282, 283
Superior semicircular canal dehiscence (SSCD)
clinical presentation 137, 138
conductive hearing loss
differentiation from otosclerosis 142
evidence 139–141
mechanisms 141, 142
prospects for study 144
treatment 144
<table>
<thead>
<tr>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>SurgiTouch scanner, carbon dioxide laser integration</td>
</tr>
<tr>
<td>Teflon, granuloma response</td>
</tr>
<tr>
<td>Tinnitus, see Severe disabling tinnitus</td>
</tr>
<tr>
<td>Ti:sapphire laser, features</td>
</tr>
<tr>
<td>Training, stapes surgery</td>
</tr>
<tr>
<td>anatomic variations</td>
</tr>
<tr>
<td>inner ear homeostasis importance</td>
</tr>
<tr>
<td>learning curve study in the United Kingdom</td>
</tr>
<tr>
<td>duration of learning curve</td>
</tr>
<tr>
<td>national survey on stapes surgery</td>
</tr>
<tr>
<td>technique type effects in different surgeons</td>
</tr>
<tr>
<td>matching of trainers and trainees</td>
</tr>
<tr>
<td>pitfalls of stapes surgery</td>
</tr>
<tr>
<td>Schuknecht’s contributions</td>
</tr>
<tr>
<td>surgery popularity trends and implications</td>
</tr>
<tr>
<td>teaching approach</td>
</tr>
<tr>
<td>Tuning fork tests, otosclerosis diagnosis</td>
</tr>
<tr>
<td>Van Buchem disease, see Sclerosing bone dysplasias</td>
</tr>
<tr>
<td>Vein grafts, oval window sealing</td>
</tr>
<tr>
<td>Vertigo</td>
</tr>
<tr>
<td>otosclerosis association</td>
</tr>
<tr>
<td>psychological and social consequences after stapes surgery</td>
</tr>
<tr>
<td>stapes surgery association</td>
</tr>
<tr>
<td>Vibrant Soundbridge (VSB) middle ear implant</td>
</tr>
<tr>
<td>indications in otosclerosis</td>
</tr>
<tr>
<td>stapedectomy combination surgery</td>
</tr>
<tr>
<td>256, 259, 262</td>
</tr>
<tr>
<td>296, 297</td>
</tr>
<tr>
<td>355, 356</td>
</tr>
<tr>
<td>356</td>
</tr>
<tr>
<td>355</td>
</tr>
<tr>
<td>354</td>
</tr>
<tr>
<td>361, 362, 368</td>
</tr>
<tr>
<td>358–360</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>361–362</td>
</tr>
<tr>
<td>362–365</td>
</tr>
<tr>
<td>364, 367, 368</td>
</tr>
<tr>
<td>362–365</td>
</tr>
<tr>
<td>364, 367, 368</td>
</tr>
<tr>
<td>364, 367, 368</td>
</tr>
<tr>
<td>368</td>
</tr>
<tr>
<td>362–365</td>
</tr>
<tr>
<td>362–365</td>
</tr>
<tr>
<td>364, 367, 368</td>
</tr>
<tr>
<td>365</td>
</tr>
<tr>
<td>365</td>
</tr>
<tr>
<td>366–368</td>
</tr>
<tr>
<td>364, 367, 368</td>
</tr>
<tr>
<td>364, 367, 368</td>
</tr>
<tr>
<td>366–368</td>
</tr>
<tr>
<td>366–368</td>
</tr>
<tr>
<td>349–351</td>
</tr>
<tr>
<td>348, 349</td>
</tr>
<tr>
<td>320</td>
</tr>
<tr>
<td>321, 322</td>
</tr>
</tbody>
</table>